In association with

Brisbane City Enterprise Pty Ltd, Australia AQUA Consultant and Associates Ltd, Bangladesh Building Design Authority, Nepal CEMAT Consultants, Nepal

Monthly Progress Report (January, 2017)

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar, Nepal

03 Feb, 2017

Biratnagar Sub - Metropolitan City, Nepal

AUSTRALIA | ASIA | MIDDLE EAST | AFRICA | PACIFIC

Project Name: Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP)	
Project Number:	56064023
Report for:	Biratnagar Sub Metropolitan City, Nepal

PREPARATION, REVIEWand AUTHORISATION

Revision	Date	Prepared by	Reviewed by	Approved for Issue by
	03 February, 2017	DSC		

ISSUE REGISTER

Distribution List	Date Issued	Number of Copies
Biratnagar Sub Metropolitan City, Nepal:	03 February, 2017	3
SMEC staff:		1
Associates:		1
Nepal Office Library(SMEC office location):		1
SMEC Project File:		1

SMEC COMPANY DETAILS

SMEC International Pty Ltd	
South Asia Regional Office, H-372, R-6, DOHS Baridhara, Dhaka, Bangladesh	
Tel:	+8802 841 3571
Fax:	+8802 882 7545
Email:	smec@smec.com

www.smec.com

The information within this document is and shall remain the property of SMEC International Pty Ltd.

	1. Salient Feature of Contract Package: STIUEIP/W/BRT/ICB-01	.4
	2 INTRODUCTION/BACKGROUND	5
	3. SUB-PROJECTCOMPONENTS	6
	3.1 Sewer Lines	6
	3.2 Storm Water Drains	8
	3.3 Waste water Treatment Plants	.11
	3.4 Roads and Lanes	.14
	3.5 Environmental Aspect	.14
	3.6 Social Aspect	.14
	3.7 Financial Plan	.15
	3.8 Disbursement Records in Construction	15
	4. OBJECTIVES AND SCOPE OF WORKS	16
	4.1Objectives	.16
	4.2 Scope of Works	.16
	5. PROGRESS OF SUB-PROJECT COMPONENTS	.16
	5.1 Storm Water Drains	16
	5.2 Sewer Lines	
	5.3 Waste Water Treatment Plant	
	5.4 Road and Lanes Improvement Works	
	5.5 Construction Materials	
	5.6 Construction Material Testing Lab.	
	5.7 Physical Progress TILL January, 2017	
		15
6.S	SUMMARY OF ACTIVITIES CARRIED OUT UP TO PREVIOUS MONTHS	.22
	6.1 Organization and Staffing	22
	6.2 Inception Report	
	6.3 Conceptual Catchment Plan and Design Criteria	.23
	6.4 Survey	.23
	6.5Design	.23
	6.6Preconstruction Activity	.23
	6.7 Draft Report	.23
	6.8Final Report	
	6.9 Consultant's Activities in Construction Phase	
	6.10 Key Dates	25
	7. DETAILS OF ACTIVITIES CARRIED OUT IN THIS MONTH OF January, 2017	26
	7.1 Physical Progress in This Month	26
	7.2 Cumulative Progress (S Curve)	
	DETAILS OFSAFEGUARD ACTIVITIES (SOCIAL, ENVIRONMENTAL AND RESETTLEMENT CTIVITIES AND ISSUES)	31
	8.1 Social Issues	-
	8.1.10perational Guidelines for Community Mobilization and Implementation of CDP	
9	KEY ISSUES AND REMARKS / REASONS FOR DEVIATION (IF ANY)	.01
-	FECTINGPROGRESS	.33

10 WORK PLAN FOR THE NEXT MONTH	33
Annex-1: Progress January, 2017	34
Annex-2: Photographs of December, 2017	35
Annex-3: Financial Status (Details of submitted invoices and receipt of payments with key date	es)41
Annex-4:Status of actions agreed with previous ADB loan review mission	47
Annex-5: Professional input as per contract vs input used till this reporting period	48
Annex-6: Minutes of Meeting January, 2017	52
Annex-7: A Laboratory Test Results of January, 2017	53
Annex-8: Contractor's Progress Report for January, 2017	56

List of Tables:

Table1: Proposed Sewer Lines in BMSC	6
Table2: Proposed Storm Water Drains in BMSC	
Table3: Proposed Waste Water Components	11
Table4: Proposed Roads	
Table5: Disbursement Records in Construction to date	15
Table 6: Plan vs. Actual Progress	19
Table 7: Agency-wise Financial Contribution	
Table 8: Consultant's Staff at Project Site	24
Table 9: Key Dates	
Table 10: Physical Progress in Storm Water Drains	26
Table 11: Physical Progress in Road Side Drain of R2 and Sewer Lines	26
Table 12: Physical Progress in Sewer Lines	26
Table 13: Physical Progress in Manholes	
Table 14: Physical Progress in Roads and Lanes	27
Table 15: Physical Progress in Waste Water Component	27
Table 16: Physical Progress in Production of Precast Items in Katahari	28
Table 17: Physical Progress in Production of RCC Hume Pipes at Itahari	28
Table 18: Contractor's Key Staff	
Table 19: Contractor's Equipment	

List of Figures:

Figure 1: Proposed Sewer Lines in BSMC	.7
Figure 2: Proposed Storm Drains in BSMC (Northern Drainage System)	9
Figure 3: Proposed Storm Drains in BSMC (Southern Drainage System)	10
Figure 4: Proposed Waste Water Treatment Plant at Jatuwa in BSMC	13
Figure 5: Plan Vs Actual Progress till January, 2017	.21
Figure 6: Organization and Staffing	.22
Figure 7: S-Curve of Physical Progress	.30

1. SALIENT FEATURE of Contract Package: STIUEIP/W/BRT/ICB-01

General Features	
Name of Project	Secondary Towns Integrated Urban Environmental Improvement Project(STIUEIP)
Executing Agency	Government of Nepal, Ministry of Urban Development Department of Urban Development and Building Construction (DUDBC)
Implementing Agency	Biratnagar Sub-Metropolitan City, Biratnagar
Funded By	Asian Development Bank &Government of Nepal
Package	Sewerage and Drainage Network, Wastewater Treatment Plant and Road and Lanes Improvement Sub Project
Contract No.	STIUEIP/W/BRT/ICB-01
Location	Biratnagar Sub-Metropolitan City, Biratnagar
Consultant	SMEC in association with Brisbane/AQUA/BDA/CEMAT
Contractor	CTCE-KALIKA Joint Venture
Date of Commencement	08 December, 2013
Revised date of Completion	09 March, 2017
Revised Contract Amount including PS and VAT (After VO-2)	NRs. 2,719,617,069.21
Revised Contract Amount including PS and VAT (VO-3 under process)	NRs. 2,977,784,619.92
Paid Amount up to IPC 20	NRs. 1,734,326,306.82 (Including PS & VAT)
	74.19% (wrt to vo-02)
Physical Progress till January, 2017	67.53% (wrt to vo-03)
Financial Progress	63.78% (wrt to vo-02) 58.25% (wrt to vo-03)

CA SMEC

2 INTRODUCTION/BACKGROUND

1. SMEC International Pty (Australia)in association with Brisbane City Enterprise Pty Ltd (Australia), AQUA Consultant and Associates Ltd (Bangladesh),Building Design Authority (Nepal) and CEMAT Consultants(Nepal) have entered for a Contract of Consulting Services with Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP),Project Implementation Unit(PIU), Biratnagar Sub metropolitan City on 7th December 2011. This monthly Progress Report of January, 2017 has been submitted to the PIU as per the Work Program proposed in the consultant's technical proposal as well as TOR of the consultant.

2 Secondary Towns Integrated Urban Environmental Improvement Project(STIUEIP), the Department of Urban Development and Building Construction (DUDBC),under the Ministry of Urban Development(MUD) through the Government of Nepal (GoN) has received the Ioan from Asian Development Bank (ADB) Loan 2650-NEP. As per PAM contribution from GoN is 3.99 million USD, Asian Development Bank (ADB) 18.86 million USD and Biratnagar Sub-metropolitan City (BSMC) 1.99 million USD while contingency is 2.88 million USD for Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar. The cost sharing has been revised in April, 2013as: Government of Nepal (GoN) is 5.960 Million USD, Asian Development Bank(ADB)24.214 Million USD, TDF Ioan 4.098 Million USD and Biratnagar Sub-metropolitan City(BSMC)2.980 Million USD and in total **37.252** Million USD.

3. In line with ADB's Strategy 2020 and based on Nepal's fundamental long term needs and on the GoN's priority, the ADB is continuing to support the Government in(i) improving urban infrastructure; improving access to water supply and sanitation (ii) supporting urban environmental improvement(iii) strengthening the operation and management skills of local governments. The proposed project Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) is another step forward to promote healthy cities by creating healthier urban environments and was formulated under the PPTA 2010.

- Contract of consulting services signed on 07December 2011.
- Design works commenced on 01 January 2012.
- Final design works submitted to the Client on March 2013
- Contract of construction works signed on 02 December 2013
- Construction works commenced on 08 December 2013

Contractor's Work Program (Revision 02) 05 December 2014, this has to be revised as the work progress is not consistent. The Contractor is advised to revise the work program and it is expected to receive by the end of August 2015. The Contractor has officially submitted the third (3rd) revised work program through the Contractor's letter in 15th September 2015 (received on 23rd September 2015). Revised Work schedule has to be submitted after EoT-01(up to 09 March, 2017).

3. SUB-PROJECTCOMPONENTS

3.1 Sewer Lines

4. The prioritized sewer lines for Final Detailed Engineering Report of BSMC are as follows:

SN.	Description	Unit	Quantity
1	Sewerage Pipe Supply and Installation	m	63,964.0
	Reinforced Concrete Pipe laying and jointing		16,612.0
	Line T1 (Secondary	m	3,788.0
	Line T2 (Trunk)	m	8,370.0
	Line T3 (Trunk)	m	4,136.0
	Line T4 (Secondary)	m	318.0
	HDPE laying and jointing	m	47,352.0
	Line T1 (Secondary	m	7,124.0
	Line T2 (Trunk)	m	19,410.0
	Line T3 (Trunk)	m	18,606.0
	Line T4 (Secondary)	m	22,12.0
2	Manhole (Brick / RCC)	no.	2,036
3	Sewer Inlet	no.	3,766.00
4	House Connection	no.	5,930.00
5	Reinstatement of Roads	km	66.06

Table1: Proposed Sewer Lines in BSMC

January 2017

FIGURE. 1PROPOSED SEWER LINES IN BSMC

3.2 Storm Water Drains

5. Most of the storm drains(S13,S11,S9,S5,B1,B2,B3,CN2,CN3 and southern parts) have been provisioned as Phase I priority works. The major storm drain outlets as planned are14 numbers and catchment areas and discharges are respectively1, 324.2Ha and 73.21 cum/sec.

S.No.	Description	Unit	Quantity
А	Storm Drain for Northern Parts		28,491.00
I	Storm Drain Lines	m	28,491.00
II	Culvert	no	41
	Outfall	no	15
IV	Rain Inlet	no	30
V	Manhole	no	30
VI	Canal Crossing	no	11
В	Storm Drain for Southern Part		
I	Brick Masonry Drain	m	8,483
П	Cleaning and Maintenance of Existing Drain	m	7,273
	Culverts	no	38
С	Rehabilitation of Existing Drain		
I	Drain Cover	М	30,467
II	Cleaning and Maintenance of Existing Drain	М	33,601

Table2: Proposed Storm Water Drains in BSMC

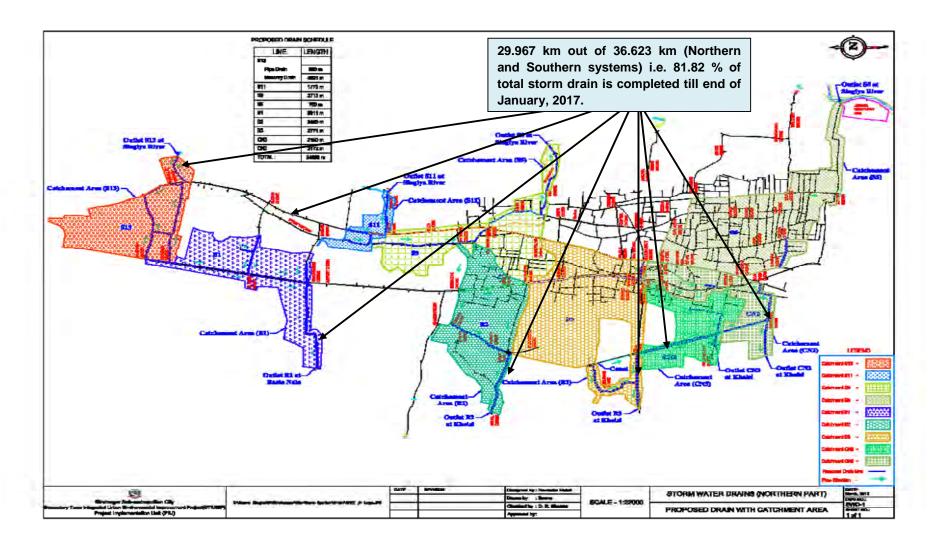


Figure 2: Proposed Storm Water Drains in BSMC (Northern Drainage System)

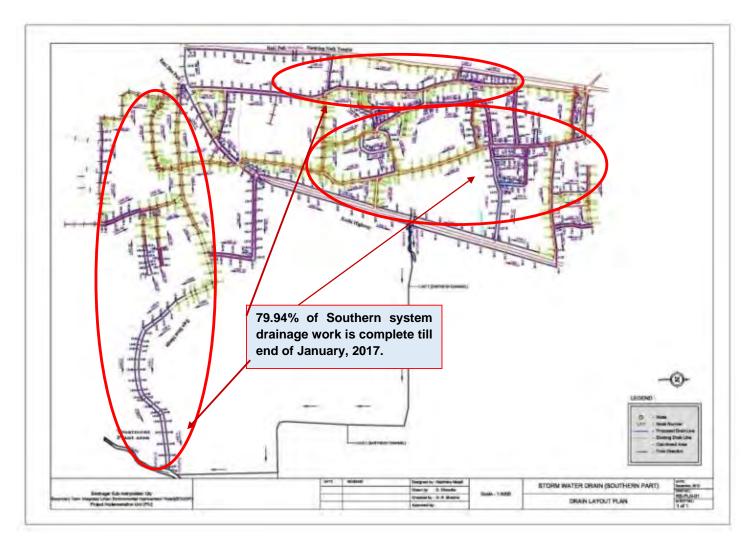


Figure 3: Proposed Storm Water Drains in BSMC (Southern Drainage System)

3.3 WASTE WATER TREATMENT PLANTS

6. The quantity of domestic waste water is calculated using water supply rate at 90 liters per person per day in the design year 2035, out of which 80% is converted into waste water. Maximum quantity of waste water is calculated taking peak factor of 1.99 to 2.5. Minimum quantity of sewage is taken as 30% of the average quantity. Commercial / Institutional / Industrial waste water quantity is calculated as 0.10 LPS/ha. While infiltration quantity is calculated as 0.14 LPS/ha in the design year 2035. The total quantity of commercial / institutional / industrial and infiltration waste water estimated as 237.79 LPS in the design year 2035 which is very large in comparison with domestic waste water quantity of 207.18 LPS. The maximum quantity (peak flow) of waste water in the design year 2035 for both Phase I and Phase II are as is estimated at 213.97 LPS. The capacity of the Phase I WWTP has been adopted as 214 LPS. The capacity of the Phase I WWTP at Jatuwa are as follows:

Table 3: Proposed Waste Water Components in BSMC

S.N.	Description	Unit	No
	Waste Water Treatment Plant Component		
1	By Pass Chamber	No	1
2	Distribution Chamber	No	1
3	Bar Screen Chamber	No	2
4	Sump well with Pumping Station	No	2
5	Collection Chamber1	No	1
6	Oil & Grease Chamber	No	2
7	CollectionChamber2	No	1
8	Grit Chamber	No	2
9	CollectionChamber3	No	1
10	Anaerobic Pond	No	3
11	Facultative Pond	No	3
12	Collection Chamber4	no	1
13	Outfall Structure	no	1
14	Sludge Drying Bed	no	10
15	Enclosure Chamber Shed	no	1
16	Guard House	no	1
17	Office Cum Lab Building	no	1
18	Workshop Building	no	1
19	Generator/Changing House	no	1
20	Entrance Gate	no	1
21	Boundary wall	m	1,340
22	Shallow Tube Well with water Tank	set	1
23	Landscaping and Plantation works	sqm	99,915
24	Site clearance, grubbing, surface dressing	sqm	99,915
25	Road and Drain Improvement	m	1,440

SMEC
 11
Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) 5064023|

26	River training works	m	600
27	Electromechanical works	Set	1
28	Lab Equipment and installation	Set	1

January 2017

Figure 4: Proposed Waste Water Treatment Plant at Jatuwa in BSMC

3.4 Roads and Lanes

7. Most of the roads/lanes in Biratnagar are in a poor state due to lack of periodic maintenance, and need improvement, where as some of the roads are graveled and would benefit from upgrading. In the areas where drainage and sewerage works are proposed there will be significant impact on the existing roads. The 3.224 Km road improvement with Asphalt from Pushpalal chowk to Pani Tanki chowk is completed where as in other roads, 4.184 Km Sub-grade and Sub-base is completed till this month and hence the Project has considered on design based on reinstatement, rehabilitation and upgrading of existing roads and lanes.

Table 4: Proposed Roads in BSMC

Description of Item	Quantity
Main Road Improvements(Road from Pushpalal Chowk to Bhatta Chowk)	2.35 Km
Reinstatement and Road Improvements (under sewer line installation)	63.71Km

3.5 Environmental Aspect

8. The project is environmental improvement project and mainly constitutes works on sewerage and drainage improvement works in BSMC besides others. As per ADB guide lines on Environmental Assessment requirements, this project is classified as Environment Category B. According to Environmental Protection Guidelines, 2054BS, First Revised (2055BS) schedule-3, IEE is required for Operations of Sewerage Schemes under Schedule1.h.2.e (pertaining to Rule3). The final report on IEE was submitted and MoUD had approved the IEE on May14, 2013.

9. Installation of functioning sewers and functioning drainage system including roads/lanes improvement in BSMC does not possess any adverse environmental impacts to its surrounding. In fact, these will greatly enhance the living conditions/hygiene of the in habitants and facilitate transportation. Nevertheless, it is imperative to look into positive as well as negative impacts of such infrastructure development works in the urban area.

10. DSC has prepared and submitted Environmental Progress Reports (Semi-Annual) October 2014 – March 2015 and Quarterly Updated Environmental Report, January – March on 27 May 2015.Recently, the DSC has received comments from PCO to revise semi-annual environmental report. The next Quarterly Updated Environmental Report for the months of April, May and June 2016 and semi –annual report has been submitted in July, 2016. The next Quarterly Updated Environmental Report 2016 semi –annual report is under preparation.

3.6 SOCIAL ASPECT

11. Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) in Biratnagar has commenced from 2010 to improve the quality of life and help to achieve higher and more socially inclusive economic growth of people through effective, efficient, and reliable delivery of improved and affordable municipal services. Infrastructure development of drainage and sewerage system as well as roads and lane improvement are the major components of STIUEIP in Biratnagar Sub-Metropolitan City (BSMC). Besides this, community development and institutional strengthening components, the two other objective focused components of STIUEIP Biratnagar are running various social development programs and activities.

Social development component is one of the major components of STIUEIP Biratnagar that comprises of various social development programs and activities like community development

program (CDP), awareness raising, skill development, health and sanitation. Social Development Specialist (SDS) in Design and Supervision Consultant (DSC) is deputed to assist the Project Implementation Unit (PIU) in implementing effectively the social activities to achieve the project goal as envisaged by the project. Monitoring of ongoing social development activities and consultation meetings with community people are the general tasks to be accomplished as regular basis.

Establishment and functioning of Social Safeguard Desk in PIU is a major milestone of social development aspect which has been effective to address all social/ community development issues and concerns with active initiation of the DSC.

Based on the poverty indicators, all details have been documented and shown in the social map. The program area for community development programs has been extended to most poverty stricken area scattered across several wards of the BSMC. The Community Development Program includes meetings, orientation, awareness activities, skill development trainings and health, hygiene and sanitation activities which are conducted and organized by the NGO (Fri PAD).

12. As there is slack period of the construction due to monsoon, currently, the drain work has been stopped due to rain water and construction materials.

The next Quarterly Report for the months of June 2016- December 2016 semi –annual report is under preparation.

3.7 Financial Plan

13. The Sub-project cost will be disbursed in three years starting from FY2013/14 to 2015/16. It has estimated that 20 percent of the Sub-project cost will be disbursed in first year. Similarly, in second year, 50 percent will be disbursed. Finally, remaining 30 percent of Sub-project cost will be disbursed in third year. Actual disbursement in the first fiscal year was 4.3 % (up to July 2014); 34.3% (up to July 2015 inclusive VO1) in second fiscal year was 56.72% so total was 63.78% (up to January, 2017). Hence the remaining disbursement 36.22 % will be done in third year.

3.8 DISBURSEMENT RECORDS IN CONSTRUCTION

Table 5: Disbursement Record in Construction to Date

.N.	Description of Payment	Total Bill Amount with VAT & PS	Amount in NRs.
1	IPC 01		209,400,000.00
2	IPC 02	29,553,479.92	27,853,500.98
3	IPC 03	50,406,775.75	47,507,270.95
4	IPC 04	44,819,505.68	42,241,392.52
5	IPC 05	23,380,168.96	22,035,291.99
6	IPC 06	90,796,339.68	85,573,541.38
7	IPC 07	80,854,600.52	76,203,672.17
8	IPC-08	122,334,488.86	115,297,549.23
9	IPC-09	116,092,187.14	109,414,317.97
10	IPC-10	132,327,417.89	124,715,663.77
11	IPC-11	169,853,829.07	160,083,476.07

illy Flogi	ess Report		January 2017
12	IPC-12	23,121,515.46	16,931,906.24
13	IPC-13	85,563,926.44	62,658,539.06
14	IPC-14	163,562,505.71	119,776,967.67
15	IPC-15	139,008,112.96	101,795,764.14
16	IPC- 16	137,640,413.95	100,794,196.94
17	IPC-17	135,118,714.02	98,947,553.85
18	IPC-18	39,288,088.98	28,770,702.33
19	IPC-19	76,081,596.87	55,714,620.72
20	IPC-20	74,522,638.96	54,572,994.46
21	IPC-21	152,577,081.94	118,075,775.83
	Grand Total	1,886,90 3,388.76	1,568,964,698.25
	Total payment to date including PS & VAT and Excluding mobilization	1,886,903,388.76	

4. OBJECTIVES AND SCOPE OF WORKS

4.1 **OBJECTIVES**

- 14. The following are the expected physical infrastructure improvement outputs of the project in Biratnagar:
 - Drainage and sewerage systems improvement.
 - Urban roads and lanes improvement.
- 15. Reference to the deliverables identified in the Project, indicates that there are a number of deliverables related specifically to the design aspects of the above infrastructure improvements with construction works.

4.2 SCOPE OF WORKS

- 16. The scope of works for consultant's services is fairly detailed in the TOR attached with contract Agreement. The main points are summarized below:
- A. Detailed Design and Procurement Assistance Phase
 - 1. Surveys verification of Feasibility Studies and GIS Base Maps
 - 2. Finalization of Design Criteria, Preparation of Manuals, Guidelines and Systems.
 - 3. Specific design requirements for the sub-projects
 - - Improvement and development of drainage and sewerage systems
 - Improvement of urban roads and lanes
 - 4. Project Planning and Management Support to PIU
 - 5. Detailed Engineering Design
- B. Construction and Post Construction Management Phase
 - 1. Construction Management and Contract Administration
 - 2. Environmental and Social Compliance Monitoring
 - 3. Implementation of Community Development Program, Community Mobilization and GESI Action Plan

- 4. Capacity Building of the Municipality and Service Providers for Operational Sustainability
- C. Communications, Reporting and Deliverables (Inception Report, Monthly Progress Reports, Interim Report for each of the outputs, Annual Progress Report, Draft Final Report for each of the outputs and Final Report).

5 PROGRESS OF SUB-PROJECT COMPONENTS

5.1 STORM WATER DRAINS

17. The Contractor has resumed the works from mid December 2015 in difficult situation due to Madesh Strikes and partial fuel supply. Storm drains at S9, S5, and Rani Area are being continued.

The contractor has completed storm water drain about 29.967 km out of 36.6234km, 81.82% till January, 2017.

5.2 Sewer Lines

18. The Contractor has resumed the sewer works from mid December 2015 in difficult situation due to Madesh Strikes and partial fuel supply. Sewer lines with HDPE pipes as well as RCC pipes have been resumed in this month.

The Contractor has completed sewer lines with HDP and RCC pipes about 34.718 km out of 43.668 km which is 79.50%, till January, 2017.

The proposal of the precast concrete manholes, sewer inlets and house connection chambers had been submitted for review and approval. Approval in consultation with the Employer has been given to the Contractor to execute at site because the proposal comes out to be economical, time effective and environmental friendly and structurally strong enough to carry out the function of their respective items.

The precast concrete house connection chambers, sewer inlets and manholes were installed at sites and found to be effective and we were able to open traffic at the shortest possible time. Especially where the business center with crowds (in R5 and R65 Roads) were very efficient and effective. This has reduced disturbances to the local people and road users, dumping of construction materials, workers and working for long period. This is found to be environment friendly too. Hence, the adaptation of precast units for sewer lines found to be effective and efficient.

During the site visit of delegate at different time in the construction period from BSMC, PMSC, ADB, PCO, local political representatives, TLO, Executive Director of TDF and the Secretary of Ministry of Urban Development have commended.

The payment for the respective item of works as appropriate is being paid under each IPCs for the cash flow and to account disbursement in ADB's disbursement book.

5.3 WASTE WATER TREATMENT PLANT

19. Office cum laboratory building, workshop building and generator / changing house at WWTP, Jatuwa are completed. The Contractor has been continued all activities except Bioengineering of WWTP.

Now the Contractor is carrying out Sump well, remaining boundary wall at WWTP from mid December 2016. Structure work in Sump well has been revised as per site condition.

5.4 ROAD AND LANES IMPROVEMENT WORKS

20. The Contractor has completed the rehabilitation / repair of existing drain of about 6.6 km in R2 road. The Contractor has completed the shifting/ relocating electric poles up to Pani tanki both sides.

The Contractor has been completed sub-grade preparation, sub-base, base course, prime and Tack coat and asphalt concrete in R2 road up to Pani Tanki Chowk. Recently contractor has completed 4184m sub-base in other roads. Road works have been frequently disturbed due to the existing water supply network and house connection pipes. The Contractor has completed 100% of road side drain of R2 road up to Pani tanki and along the sewer lines about 21.940km out of 36.050 km, 60.86% till January, 2017.

5.5 CONSTRUCTION MATERIALS

21. The fabrication of steel moulds for precast units- manholes, sewer inlets and house connection chamber are continuing in this month also. Similarly, other item of works inside the Contractor's yard is also going on smoothly.

The Contractor has resumed to produce the precast items (manholes, sewer inlets, house connection chambers, kerb stones, drain cover slabs etc.) at the Contractor's Camp, Katahari from mid December 2015.

5.6 CONSTRUCTION MATERIAL TESTING LAB

22. Construction material testing laboratory has been set up at the Contractor's camp at Katahari. Cube Test, Brick Compressive Strength, Cement Test is conducted in the Laboratory. Besides these tests, Aggregate Crushing Value (ACV), Flakiness Index (FI), Los Angeles Abrasion (LAA), CBR tests are also conducted.

As regular, Three Edge Bearing Test for RCC pipes of different diameter has been conducted on 20 January 2016 at Itahari in presence of Consultant (TL, CSE) and PM/PIU. And results were found satisfactory.

Now, construction material testing lab is working in full swing for testing of sub grade material, sub base material, base material, Bituminous items, concrete, brick, sand and aggregates.

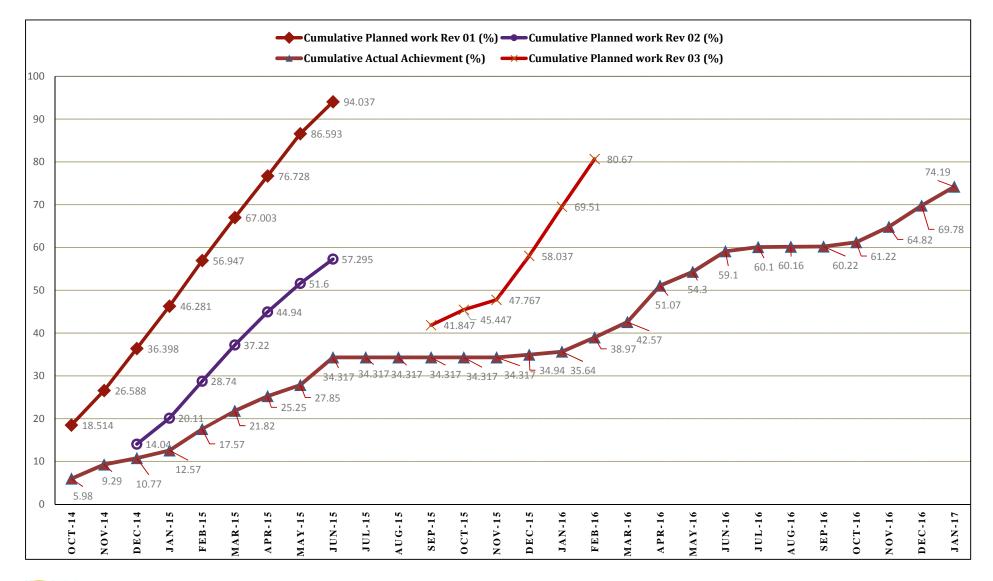
Monthly Progress Repo

January 2017

5.7 PHYSICAL PROGRESS TILL JANUARY, 2017.

23. Total physical progress till January, 2017 is about 74.19% wrt to-02 and 67.53% wrt to-03 which is under progress. The Contractor has to be submitted revised work schedule with respect to variation order no-03.

Table 6: Plan vs. Actual Progress till January, 2017


			Secondar	y Towns I	ntegrated	Urban Env	vironmenta	l Improvei	nent Projec	t (STIUEIF	P), Biratna	gar				
	Plan Vs. Progress															
Month	Sep-14	Oct-14	Nov-14	Dec-14	Jan-15	Feb-15	Mar-15	Apr-15	May-15	Jun-15	Jul-15	Aug-15	Sep-15	Oct-15	Nov-15	Dec-15
Cumulative Planned work Rev 01 (%)	17.098	18.514	26.588	36.398	46.281	56.947	67.003	76.728	86.593	94.037	95.75	95.99	96.16	96.3	96.45	96.59
Cumulative Planned work Rev 02 (%)				14.04	20.11	28.74	37.22	44.94	51.60	57.295	59.33	60.92	60.99	61.07	64.65	71.29
Cumulative Planned work Rev 03 (%)													41.847	45.447	47.767	58.037
Cumulative Actual Achievements (%)	5.81	5.98	9.29	10.77	12.57	17.57	21.82	25.25	27.85	34.317	34.317	34.317	34.317	34.317	34.317	34.94
Progress lagging to date wrt revised work plan rev 03 (%)	ogress lagging to date wrt the vised work plan rev 03 (%) (12.53) (17.30) (3.27) (7.54) (11.17) (15.40) (19.69) (23.75) (22.98) (22.98) (22.98) (22.98) (7.53) (11.13) (13.45) (23.09)										(23.09)					

January 2017

	Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar															
	Plan Vs. Progress															
Month		Jan-16	Feb-16	Mar-16	Apr-16	May-16	June-16	July-16	Aug-16	Sep-16	Oct-16	Nov-16	Dec-16	Jan-17	Feb-17	Mar-17
Cumulative Planned work Rev 01 (%)		96.74	97.38	97.18												
Cumulative Planned work Rev 02 (%)		79.29	88.71	96.41												
Cumulative Planned work Rev 03 (%)		69.51	80.67	91.46	97.82	100.00										
Cumulative Actual Achievements (%)		35.64	38.97	42.57	51.07	54.30	59.10	60.10	60.16	60.22	61.22	64.82	69.78/63.12	74.19/67.53		
Progress lagging to date wrt revised work plan rev 03 (%)	the	(33.87)	(41.70)	48.89	46.75	45.70										

6 SUMMARY OF ACTIVITIES CARRIED OUT UP TO PREVIOUS MONTHS

6.1 ORGANIZATION AND STAFFING

The Project has involvement of different organization and the staffing as shown below.

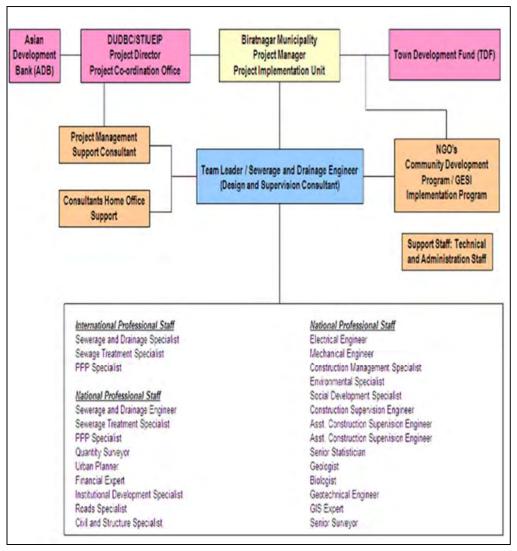


Figure 6: Organization and Staffing of STIUEIP, Biratnagar

6.2 Inception Report

24. The Inception Report was prepared and submitted on 29 February, 2012.

6.3 CONCEPTUAL CATCHMENT PLAN AND DESIGN CRITERIA

25. The Conceptual Catchment Plan and Design Criteria was prepared and presented in PCO on 30March, 2012.

6.4 SURVEY

26. The survey was completed in August, 2012

6.5 DESIGN

27. The design of sewer lines, storm drains, WWTPs and appurtenances and final detailed design and estimates were submitted in March 2013.

28. During construction B2, B3 and S5 alternate design was also submitted. Similarly, CN2 and CN3 were submitted as the community request to reduce the size. The size was reviewed with 1 year return period as per the suggestion made by PMSC during field visit. Minor modifications in drawings are being carried out for considering the site condition and progress.

6.6 **PRE-CONSTRUCTION ACTIVITY**

29. After successful completion of one stage two envelope bidding procedure the construction contract for STIUEIP/W/BRT/ICB-01 was signed on December 2, 2013 with M/S CTCE-Kalika JV, Baluwatar, Kathmandu.

6.7 DRAFT REPORT

30. The construction/contract timing schedule was needed to incorporate some additional time of about 4-5 months to account for decision re-making process, tender award procedures.

31. The total cost as per PPTA and earlier designs increased drastically and came to be NRs.7, 274,465,206.69 and therefore needs curtailments and revisions had to be made as per suggestions by PIU in final report.

32. The overall works proposed in the PPTA and the area coverage with connection was thus needed to be phased out.

6.8 FINAL REPORT

33. The DSC submitted the Final Reports adopting cost reduction exercise by phasing out of the works. The estimated cost of the Project was reduced and kept as NRs.**3**, **278**, **140**, **000**, **00** with a lot of exercises in March 2013.

34. The sharing of cost by concerned institutions is as follows

Table7: Agency-wise Financial Contribution to BSMC

Contributors	Amount(US\$)	Amount (NRs.)	%
Government of Nepal (GoN)	5,960,256	524,502,513	16.0%
Asian Development Bank (ADB)	24,213,539	2,130,791,460	65.0%
Biratnagar Sub-Metropolitan City (BSMC)	2,980,128	262,251,257	8.0%
Town Development Fund (TDF)	4,097,676	360,595,478	11.0%

6.9 CONSULTANT'S ACTIVITIES IN CONSTRUCTION PHASE

35. The current staffing of the consultant at project site is as follows

Table 8: Consultant's Staff at Project Site, Biratnagar

Name	Position
Giresh Chand	Officiating Team Leader/CSE
Jaya Prakash Yadav	Asst. Construction Supervision Engineer-1
Dikendra Katwal	Asst. Construction Supervision Engineer-2
Rajesh Yadav	Junior Engineer-1
Deepak Majhi	Junior Engineer-2
Arun Kumar Yadav	Junior Engineer-3
Jay Prakash Yadav	Junior Engineer-4
Santosh Kumar Yadav	Office Manager/Computer Operator
Ramji Gimire	Driver-1
Suman Ghimire	Driver-2
Ramila Ghimire	Office Assistant
	Giresh Chand Jaya Prakash Yadav Dikendra Katwal Rajesh Yadav Deepak Majhi Arun Kumar Yadav Jay Prakash Yadav Santosh Kumar Yadav Ramji Gimire Suman Ghimire

36. The consultant has been constantly supervising the contractor's work in daily basis. The consultant is mainly focusing in construction management, contract administration and the following activities but not limited as listed below:

- i. Daily Construction supervision
- ii. Quality control, cost control and time control
- iii. Measurement and Certification of Interim Payment Certificates (IPC)
- iv. Modification and design of storm drainage and sewer lines, manholes etc. as per site condition and approve working drawings
- v. Supervise construction material testing and sampling

- vi. Monitor Environment Management Plan and its compliance
- vii. Monitor Social safeguard and Resettlement Plan and its compliance
- viii. Meet obligation of reporting requirement Updated Environmental Progress Report, Updated Resettlement Progress Report, Monthly Progress Report, Semi-Annual Updated Resettlement Progress Report
- ix. Prepare Due Diligence Report of the Project
- x. Maintain correspondences with the Employer and the Contractor
- xi. Assist to PIU

6.10 Key Dates

The consultant has noted the following key dates for the month of December, 2016

Table 9: Key dates of events /activities:

S. No	Date	Activities/Events	Remarks
1			
2			

7 DETAILS OF ACTIVITIES CARRIED OUT IN THIS MONTH

7.1 PHYSICAL PROGRESS IN THIS MONTH

The Employer has discussed/agreed/decided to curtail (base and Asphalt) the scope of the work due to some works were missed in original contract itself, some works were not foreseen in original contract, some works due to local demand etc.

Therefore, following are the physical progress with respect to variation order no-03 which is under process:

	Physical Progress till January 2017											
		Proposed	Progr	ess								
S.N.	Location	Length (m)	Up to Dec This 2016 (m) (m)		Total to Date (m)	Progress (%)						
1	B1	3,950	3628.00		3628.00	91.85						
2	B2	3,742	3724.00	0	3724.00	99.52						
3	B3	3,514	3363.00	0	3363.00	95.69						
4	S5	1201	1201.00	0	1201.00	62.16						
5	S9	3,558	2370.00	138	2508.00	70.49						
6	S11	2,092	2082.00	0	2082.00	99.52						
7	S13	5,640	4864.00	0	4864.00	86.23						
8	CN2	2,273	2142.00	0	2142.00	94.24						
9	CN3	2,170	1122.00	0	1122.00	51.71						
10	Rani	8,483	5333.00	8	5341.00	62.96						
	Total	36,623	29829.00	138	29967.00	81.82						

 Table 10: Physical Progress in Storm Water Drains

Table 11: Physical Progress in Road Side Drains:

	Physical Progress till January 2017												
				Prog	ress								
S.N.	Location	Length (m)	Total Length (m)	Up to Dec. 2016 (m)	This Month (m)	Total to Date (m)	Progress (%)						
1	R2	3420	6840	6325	0	6325	92.47						
2	R3	2233	2993	2794	80	2874	96.02						
3	R4	1246	2212	660	0	660	29.84						
4	R5	1068	2136	900	640	1540	72.10						
5	R6	1280	2560	0	0	0	0						
6	R7	485	615	180	80	260	42.28						
7	R8	370	740	0	332	332	44.86						
8	R9D	116	232	0	0	0	0						
9	R13	220	440	400	0	400	90.91						
10	R16	580.0	1160	5 85	415	1000	92.59						
11	R21	2420	2420	1050	400	1450	59.92						
SM	EC.			h	6								

SMEC

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) 5064023|

12	R22	359	718	676	0	676	94.15
13	R24	390	780	720	0		92.31
14	R25	594	1188	630	350	980	82.49
15	R26	620	1240	898	0	898	72.42
16	R27	977	1954	790	160	950	48.62
17	R28	620	1240	430	270	700	40.48
18	R29	620	1240	0	206	206	16.61
19	R30	328	656	0	0	0	0.00
20	R31	187	374	170	0	170	45.45
21	R32	189	378	0	0	0	0.00
22	R37	785	1570	370	230	600	38.22
23	R64	120	120	120	0	120	100
24	R78	92	184	0	82	82	44.57
25	R107	157	314	155	0	155	49.36
26	R108	96	192	170	0	170	88.54
27	R109	90	360	340	15	355	98.61
28	T2L18O	143	286	268	0	268	93.71
29	T3L26E	93	186	18	30	48	25.81
30	T2L19R	177	354	0	0	0	0.00
31	T2L19P	103	206	0	0	0	0.00
32	T2L19U	81	162	0	0	0	0.00
33	T3L28	74.0	148.0	145	0		97.97
	Road Side Drain		36050	18650	3290	21940	60.86

Table 12: Physical Progress in Sewer Lines:

S.N	Location	As per estimate		This month		Up to Previous Month		Total to Date		Progress (%)	
		Distance (m.)	MH (no.)	Distance (m.)	MH (no.)	Distance (m.)	MH (no.)	Distance (m.)	MH (no.)	Distance (m.)	MH (no.)
1	HDPE(T1)	3817.10	127	0.00	0	3364.50	116	3364.50	116		
2	HDPE(T2)	13595.40	485	160.20	7	12495.25	436	12655.45	436		
3	HDPE(T3)	7030.30	258	90.00	4	6481.10	234	6571.1 0	234		
4	HDPE(T4)	117.30	3	0.00	0	112.00	3	112	3		
5	Sub Total(HDPE)	24560.10	873	250.20	11	22452.85	789	22703.05	789	92.75	91.64
6	Hume Pipe(T1)	5026.80	144	0.00	0	1780.50	53	1780.50	53		
7	Hume Pipe(T2)	9488.00	276	1146.00	30	6237.00	175	7383.00	175		
8	Hume Pipe(T3)	44.10	129	132.00	1	2719.50	62	2851.50	62		

Monthly Progress Report

January 2017

9	Hume Pipe(T4)	183.50	5	0.00	0	0.00	0	0.00	0		
10	Sub Total Hume Pipe	19108.40	554	1278.00	31	10737.00	290	12015.00	290	62.61	57.22
11	Total (HDPE+Hume pipe)	43668.50	1427	1528.20	42	33189.85	1079	34718.05	1079	79.50	78.17

Table 13: Physical Progress in Manhole, sewer inlet and House connection chamber

S.N.	Description	Proposed Quantity(no.)	This month	Up to Previous Month	Total to Date	Progress (%)
1	Manhole	1434	42	1079	1121	78.17
2	Sewer inlet	2924	530	801	1331	45.52
3	House connection chamber	4500	23 5	154	389	8.64

Table 14: Physical Progress in Roads and Lanes:

Physical Progress till January 2017									
		Dueueeed	Pro	gress		Due en			
S.N.	Location	Proposed Length (km)	Up to Dec 2016 (m)	This Month (m)	Total to Date (m)	Progr ess (%)			
1	All roads Including WWTP road	43.832	Sub- grade=3224m Sub Base=3224m Base=2176m Prime Coat=2096m Asphalt Concrete=2096 m	Sub- grade=4184m Sub- base=4184m Base=1048m Prime Coat=1128m Asphalt Concrete=1128 m	Sub-grade=7408m Sub-base=7408m Base=3224m Prime Coat=3224m Asphalt Concrete=3224m	16.90			

Table 15: Physical Progress in Waste Water Treatment Plant (WWTP), Jatuwa

	Physical Progress till January 2017									
			Progre	ess						
S.N.	Description	Proposed Quantity	Up to Dec 2016	This Month	Total to Date	Remarks				
1	Anaerobic Pond	3 nos	3 (excavation)	0	3 (excavation)	Slope finishing work under progress				
2	Facultative Pond	3 nos	2 (excavation)	0.5	2.5 (excavation)	Slope finishing work under				

SMEC

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) 5064023|

						progress
3	River Training Work	600 m	600 m	0	600 m	100%
4	Boundary Wall	1340m	1238 m	40	1278 m	95.37%
5	Office cum Lab Building	1 no	1 no	0	1	95%
6	Workshop Building	1 no	1 no	0	1	95%
7	Generator / Changing House	1 no	1 no	0	1	95%
8	Sump Well	1 no	0.15	0.25	0.25	Upto 4.70 m height R.C.C work completed remaining work under progress
9	Sludge Drying Bed	1no	0	0.75	0.75	Brick Masonary work completed pipe,sand and gravel packing work under progress
10	Road Side Drain	1440	0	135	135	

Table 16: Physical Progress in Production of Precast Items at Katahari:

	Physical Progress till January 2017								
			Progr	ess					
S.N.	Description	Unit	Up to Dec 2016 (no)	This Month (no)	Total to Date (no)	Remarks			
1	Precast Slab	No	91405	1650	93055				
2	Precuts	No	11209	0	11209				
3	Kerb Stone	No	23135	0	23135				
4	Manhole	No	2200	0	2200				
5	Sewer Inlet	No	2074	150	2224				
6	House Connection Chamber	No	1346	0	1346				

Table 17: Physical Progress in Production of RCC Pipes at Itahari

	Physical Progress till January 2017								
			Progr	ess					
S.N.	Description	Diameter (mm)	Up to Dec 2016 (no)	This Month (no)	Total to Date (no)	Remarks			
1	RCC Pipe	200	2,123	0	2,123				
2	RCC Pipe	300	328	0	370				
3	RCC Pipe	350	216	0	216				
4	RCC Pipe	400	370	0	370				
5	RCC Pipe	450	84	0	84				
6	RCC Pipe	500	551	0	551				
7	RCC Pipe	600	963	0	963				
8	RCC Pipe	700	1,296	0	1296				
9	RCC Pipe	900	278	0	278				
10	RCC Pipe	1000	1011	0	1,019				
11	RCC Pipe	1600	373	0	373				
	Total		7,643	0	7,643				

Contractor's Manpower

Table 18: Contractor's key staffs in December 2016:

Designation	No	Remarks
Project / Contract Manager	1	
Planning Engineer/Construction Engineer	1	
Construction Engineer	2	
Site Engineers	5	
Quality Control Manager	1	
Office/Bill Engineer	0	
Junior Engineer	10	
Sub Overseers	6	
Safety Manager / Senior Site Supervisor	1	
Accountant / Office Manager	1	
Lab Assistant	3	
Store Keeper	4	
Light Drivers	4	
Machine Operator	14	
Site Supervisor	12	
Other Supporting Staff	18	
Skilled Labor at Site	>75	
Unskilled Labor at Site	>250	

Contractor's Equipment: Table 19: Contractor's Equipment: At Judi camp

Equipment		No	Remarks
Excavator		Ğ	
Back Hoe JCB		<u>11</u>	
Grader		1	
(SMEC	30		

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP) 5064023

Crane / Teller	1	
Water Tanker	3	
Tractor	7	
Tipper	4	
Light Vehicle	2	
Motorbike	10	
Kerb Stone Machine Set	1	
Generator	4	
Welding Machine	3	
Diesel Tank with Pump	1	
Stand Drill Machine	1	
Gas Cutter Set	1	
Pipe Cutter	1	
Hand Grinder	1	
Plate Compactor	2	
Monkey Jumper	1	
Concrete Batching Plant	1	
Electric Vibrator	3	
Bar Bending Machine	3	
Bar Cutter Machine	3	
Transit Mixer	0	
Concrete Mixer (Hydraulic)	2	
Concrete Mixer (Manual)	2	
Asphalt Concrete Plant	1	
Asphalt Paver Machine	1	

8 DETAILS OF SAFEGUARD ACTIVITIES (SOCIAL, ENVIRONMENTALANDRESETTLEMENT ACTIVITIESANDISSUES)

8.1 SOCIAL ISSUES

8.1.1 OPERATIONAL GUIDE LINES FOR COMMUNITY MOBILIZATION AND IMPLEMENTATION OF CDP

• VISIT, INTERACTION AND CONSULTATION WITH COMMUNITY PEOPLE

37. Social Development Specialist (SDS) of the DSC is closely monitoring the social issues resulted due to the project activities. Visiting and interacting with people, Tole Lane Organizations (TLOs) and formal and informal consultation meetings are going on in this regard.

The project is regularly disseminating the information and message to community people about the project features, its purpose, methods of use and functionality of infrastructure under construction by the project through such consultation meetings. These meetings are fruitful to provide prior information regarding the project construction activities before execution at the community level. It is an appropriate platform to interact and make dialogue between 4 Cs (The Client, Consultant, Contractor and Community) about the project features, prime objectives, purpose, work methodology and potential threats/ cautions to be adopted during the project implementation.

The visits, meetings and consultations with community people at TLOs have provided many opportunities to obtain people's views and perception towards the project. Community people of those particular localities used to discuss extensively in the project features and have been provided some suggestions for efficient carryover of the project components and assured cooperation and coordination in the project execution in their localities.

Social Development Specialist (SDS)/ DSC along with of PIU, NGO staffs have been actively participated in the meetings. SDS/DSC as usual facilitate the consultation meetings, support to prepare meeting minutes and obtain decisions.

Apart from of this, many field visits and observations with community are also important to disseminate project message and monitor project features in the community. Monitoring visits along with Project Manager (PM), TL/DSC and TL/CDP to the core project area, community development program area and construction sites have been beneficial to make insight to the project progress, its effectiveness and challenges.

• SAFEGUARD DESK

38. A Safeguard Desk established in the project has been effective in planning, monitoring and follow up of all social development/ safeguard issues including the resettlement plan. It has been started as a functional mechanism consisting of PIU, NGO and DSC for this purpose. The desk consists of the Social Development Chief of PIU, Team Leader of CDP/ NGO and SDS of DSC with close consultation and guidance of PM/ PIU. It is in compliance with the Aide Memoire of last ADB Mission (21 April-12 May 2014). It is decided that the desk will review, update and discuss the progress, issues, constraints and challenges of social aspects, Community Development Program and implementation of resettlement plan as well as monitoring of social development activities.

TOT ON GENDER AND SOCIAL INCLUSION (GESI) MAINSTREAMING

39. The project has been envisaged a 'Training of Trainers (ToT) on GESI Mainstreaming' for Biratnagar Sub Metropolitan City (BSMC) Office and STIUEIP project staff. The Aide Memoir Report of the ADB Review Mission has also noted about the training to be conducted in Biratnagar for the staff of municipality and related agencies. The Mission has recommended for conducting GESI training relating to urban infrastructure development to staff of municipality, municipal steering committee, PIU, local stakeholder agency and make them accountable for the better results. In line with this, the project is going to conduct Gender and Social Inclusion (GESI) Sensitization Training when it is approved. The revised ToT has been submitted to PIU, STIUEIP, Biratnagar incorporating the comments from PMSC and PCO.

Safeguard desk members discussed and reviewed the proposed 'ToT on GESI Mainstreaming' proposal. Social Development Specialist (SDS) of DSC has reviewed the detail proposal and adjusted budget accordingly for the 'Training of Trainers (ToT)' model. The training arrangement will be decided after the approval of this proposal by the project authority. Primarily it will be a 5 days training focusing mainly on Gender and Social inclusion Action Plan (GESIAP) comprising other project elements. About 35 participants from Biratnagar Sub Metropolitan City (BSMC) office and project staffs will participate in the training.

• Update of Small Facilities Construction and other Activities in CDP/STIUEIP

40. The latest safeguard desk meeting has reviewed all ongoing and completed small facilities infrastructure and other activities implemented under the Community Development Program (CDP), a component of STIUEIP. It provided a common understanding and status information of infrastructures and activities under the CDP program to all safeguard desk members.

A glimpse of community development program has been obtained by the presentation in the appraisal and interaction meeting. Total 7,417.36 m. roads and 13,246.32 m. drains are under construction through small facilities infrastructure by CDP/STIUEIP. Regarding on the household toilet, total 458 nos. such toilets has been built by May 2015. Similarly 10 hand pumps have been installed, 45 hands pump platforms built and 5 public toilets are complete.

• Employment in Project

41. The core activities of the project i.e. sewerage pipe laying, drain construction and road/ lane improvement provided employment to about 270 in a day this month. The employed human resources varied from skilled engineer/ project manager to general labor, supervisor, (sub) overseers and mechanics. However, a very few women (16%) are working in the construction activities as skilled and unskilled labor but they are paid equal to men for similar type of work. Three women Assistant Sub-Engineers are also working at construction sites after completing OJT (on the job training) successfully at the same sites from different CTEVT affiliated institutes of nearby districts. The contractor has been suggested to increase the work opportunity to women in different types of works.

General

42. Sewer/ Drainage lines are being laid in the public rights of way (RoW). During construction, if any trees or crops or structures demolished, it shall be properly addressed with compensation. Private individuals or shopkeepers will also be looked into if their livelihood is affected by the disturbance during constructions/ pipe laying works.

Apart from this, the project did not encounter any resettlement or re-location and any compensation issue.

9KEY ISSUES AND REMARKS/REASONFOR DEVIATION (IFANY) AFFECTINGPROGRESS

43. Following are the key issues affected in progress:

• Disturbance from existing water supply pipe lines network, under-ground cables, electric poles etc.

10 WORK PLAN FOR THE NEXT MONTH

44. Following are the Contractor's works in the next month <u>(Please refer to the contractor's progress report for quantitative plan works for next month) the revised work program shall be submitted after the approval of Variation order no-03 as discussed/agreed between three parties-3C.</u>

- Road side drain construction
- Road Works at R2 Road and other Roads
- Sewer line construction
- WWPP
- Maintenance work as per instruction/required.

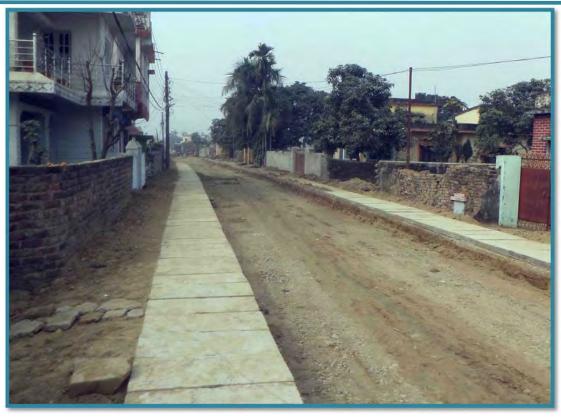
ANNEX2: PHOTOGRAPHS – JANUARY 2017

Concreting work sump well

Asphalt Finishing at R2 Road

Page | 35 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

Pipe laying T2 trunk (1)



Formworks and Preparation for RCC at R16

Plastering and Punning at R28 Page | 37 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

Placing Cover Slabs and Preparation for Sub-Base at R25

Technical Meeting Held at Consultant's Office between Consultant's and Contractor's Engineers Page | 38 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

<u>Annex-6: Minutes of Meeting – January, 2017</u>

<u>Annex-7</u>

: Laboratory Test Results of January, 2017

Page | 40 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

BIRATNAGAR Sub-Metropolitant City

STIUEIP

Monthly Laboratory Testing Report

(For The Month OF- JANUARY 2017)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

2

Contractors: CTCE- KALIKA J/V

1

C No.	Description of Material	Type of test	Total No. of Test upto previous		Test Performe	d for this month		Total No. of Test	Remarks
S. No.	Description of Material	Type of test	month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Conservation of the
		Bitumen extraction	20	16	16	0		36	
		Voids in Mineral Agg	60	42	42	0		102	
		Job mix in AC Plant	22	42	42	0		64	
17	BITUMEN SPREAD TEST								
	Prime coat	Application rate	20	28	28	0		48	
	Tack coat	Application rate	10	28	28	0		38	
18	Machines/Equipment Caliberation of compressive	1000KN Manuall 500 KN Manuall	2	0	0	0	-	2	
	Testing machine C.B.R Machine	50KN/30KN	2	0	0	0	-	2	
	Marshall Stability Machine	50KN/25KN	2	0	0	0	-	2	
19	MISCELLANEOUS		-						
	G.I Wire(Gabion Boxes)		5	0	0	0		5	
	Factory Test Report of Cement		8	0	0	0		8	
	Factory Test Report of Iron Steel		4	0	0	0	-	4	
	Factory Test Report of 80/100 Bitumen		2	0	0	0		2	
	Factory Test Report of UPVC/HDP Pipe		2	0	0	0	+	2	
	UPVC/HDP Pipe Test Result		2	0	0	0		2	
	C = Max Dry Dennsity Moisture Content	LAA = Los Angeles Abra SE=Sand Equivqlent	sion	¥.		Mix Formula		1	ushing Ratio
SSS = So ACV = Ag	dium Sulphate Soundness gregtae Crushing Value rnia Bearing Ratio	SMEC-Brisbane-AQU/ Approved by C.S.E Checked by A.C.S.E Consultant Reps				Submitted Prepaid by	KALIKA J/V by Project Ma Q.C Manager ractors Reps		

			MARY OF FIEL FOR THE MON	TH OF JANU	ART ZUI	1	
	Descri	ption : Field	Density Tests on CH	:6+380 to 7+260	R-3 Road	(DHARAMBA	N Road) P G-1
-	SUE	GRADE					
.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree of	Compaction, %	THICKNESS (CM
-			6+380	2.01	95.2	5.00	10
1		F	6+410	2.01	95.2	5.00	10
2		F	6+440	2.06	97.78	5.50	10
3		F	6+470	2.07	97.92	5.00	10
4		F	6+500	2.05	97.07	5.00	10
5			6+530	2.02	95.87	5.50	10
6			6+560	2.02	95.61	5.00	10
7			6+590	2.05	95.61	5.00	10
8			6+620	2.05	95.61	4.50	10
9			6+650	2.03	96.38	5.00	10
10			6+680	2.03	96.38	5.00	10
11			6+710	2.04	96.46	5.00	10
12	FD 35	13/1/2017	6+740	2.03	96.16	5.00	10
13	-		6+770	2.06	97.80	5.00	10
14	-		6+800	2.07	97.90	5.00	10
15	1		6+830	2.02	95.90	5.00	10
16	7		6+860	2.04	96.62	5.00	10
17	1		6+890	2.05	96.96	4.90	10
18	-		6+920	2.03	96.10	5.00	10
19	1		6+950	2.06	97.69	5.00	10
20	-		6+980	2.04	96.48	5.00	10
2'			7+010	2.02	95.51	5.00	10
2:	-		7+040	2.04	96.71	5.00	10
2	-		7+070	2.02	95.51	5.00	10
2	4	1		2.110	95	OMC <9.5	50
SAT	pproved	l by C.S.E cked by A.(UA-CEMAT-BDA	CTCE-KA Submitted Test Con Contracto	d by Proje ducted by	ct Manager Q.C. Manag	per ur

~	i.	SU	MMARY OF FIEL FOR THE MON				(T-28)
			iption : Field Density			84 R-17 Line	
		IB GRADE					P.G-1
S.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM
1			0+010	1.90	96.1	5.00	10
2			0+040	1.91	96.7	5.00	10
3	8		0+070	1.93	97.75	5.50	10
4			0+100	1.90	96.08	5.50	10
5			0+130	1.93	97.75	5.00	10
6			0+160	1.90	96.08	5.50	10
7			0+200	1.93	97.77	5.00	10
8			0+230	1.92	97.33	5.00	10
10			0+260	1.93	97.77	5.50	10
11			0+300	1.89	95.88	5.50	10
12			0+340	1.93	97.77	5.00	10
	FD 40	14/1/2017	0+380	1.93	97.77	5.50	10
+		*					
-		-					
-		-			-	-	
_		-			-		
-		-					
	-				110		
-					-		
					-		
					-		
-					-		
					-		
				1.975	95	OMC <9.70	
1	~						
App Tes	roved b	by C.S.E ked by A.C.S	A-CEMAT-BDA	CTCE-KALI Submitted b Test Condu Contractors	cted by	t Manager Q.C Manager	1.

			MMARY OF FIEL	TH OF JANU	JARY 20	017	
	Des	scription : I	Field Density Tests	s on CH:0+00	to 0+150	R-25 DEVI	NARG P.G-1
_		B GRADE			-		P.G-1
5.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM)
1			0+010	1.89	95.10	6.00	10
2			0+040	1.92	96.58	7.00	10
3		Ī	0+070	1.93	97.16	6.00	10
4			0+100	1.91	96.08	5.00	10
5			0+135	1.90	95.47	5.00	10
6		ļ	0+145	1.93	97.16	5.00	10
1							
		-			-		
-		-					
-21-	FD-47	30/1/2017					
-				1			
-							*
-							
-							
-		0					
-			P				
-			i de la companya de				
-							
]			1.985	95	OMC <10.5	50
Ap Te	proved st Chec	sbane-AQU by C.S.E ked by A.C. t Reps	A-CEMAT-BDA	CTCE-KAL Submitted Test Cond Contractor	by Proje ucted by	ct Manager Q.C Manage	

	SECON	DARY TOWN	IS INTEGRATED UR	ABAN ENVIRON	MENTA		PROJECT				
				Sub-Metropolit							
		SU	MMARY OF FIE				(-28)				
			FOR THE MON				,				
[Descript	ion : Field De	ensity Tests on R2 c				und About				
				BASE LAYE							
S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks				
1			1+000 LHS	2.22	98.7	6.00					
2			1+030 RHS	2.20	97.6	5.50					
3			1+050 CL	2.21	98.2	6.00					
4			1+070 LHS	2.17	96.37	6.00					
5			1+100 RHS	2.18	97.07	6.50					
6			1+120 CL	2.20	97.58	6.00					
7		[0+00 East	2.18	96.95	6.00					
8	-		0+030 East	2.19	97.41	5.00					
9	FD 22 3/1	3/1/2017	0+00 West	2.20	97.85	5.00					
10	10 22	5/1/2017	0+030 West	2.20	97.97	5.00					
11	-	[0+00 Sourth	2.19	97.41	5.00					
12			0+030 Sourth	2.19	97.41	5.00					
_		-									
					/						
	-			/			-				
			/								
				2.250	95%	OMC <8.50					
ME	C-Brisb	ane-AQUA	-CEMAT-BDA	CTCE-KALIKA J/V							
ppr	oved by	C.S.E		Submitted by Project Manager*							
est	Checke	d by A.C.S	E	Test Conducted by Q.C Manager							
ons	ultant F	Reps	Joy .	Contractors Reps							

	SI		Sub-Metropoli	itant Cit	у	
	0.	JMMARY OF FI	ELD DENSITY	TES (IS:2720:-PAI	RT-28)
	Desc	FOR THE MC				
	Deser	CRUSHED	ty lests on R2 cl	h:3+420	to 3+800 RHS	_
S.N. No.			STONE BAS	ELAYE	R	
S.N. No.	Date	Location/ Area	MDD Gm/CC	Degre	e of Compaction, %	Depth (CM
1		3+400 LHS	2.30	99.57	6.00	45
2		3+440 RHS	2.29	99.13	6.00	15
3		3+460 CL	2.30	99.57		15
4		3+480 LHS	2.29	99.13		<u> </u>
5		3+500 LHS	2.29	99.13	6.00	16
6		3+520 RHS	2.27	98.26	6.00	15.5
7		3+540 CL	2.29	99.13	5.00	15.5
8		3+560 RHS	2.28	98.70	6.00	15
9 FD 17	4/1/2017	3+580 RHS	2.28	98.70	5.50	15.5
10		3+600 RHS	2.28	98.70	6.00	15.5
11 -		3+620 LHS	2.29	99.13	5.00	15
12	-	3+640 RHS	2.30	99.56	5.50	15.5
13		3+660 CL	2.28	98.70	5.50	15
4		3+670 LHS	2.30	99.56	6.00	15.5
5		3+690 RHS	2.28	98.70	6.00	15
6		3+700 RHS	2.28	98.70	6.00	15
7	_	3+720 LHS	2.27	98.26	5.00	15
8		3+740 RHS	2.29	99.13	5.00	40.0
			2.310	98%	OMC <6.30	15 cm

11

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar-Sub-Metropolitant City SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE P.G-7 FOR THE MONTH OF JANUARY 2017 Remarks **Consistency & Setting Time** 28 day's cube crushing 7 day's cube Crushing Details of MIX Casting Name of Str. N/mm2 Str. N/mm2 LAB REF Location/Structure Date Date Final(min.) S.N. Intial(min.) Norm. Const. CEMENT No. 19/1/2017 7.90 6.40 30/12/2016 310 19 36.40 23/12/2016 1:4 by volume **R-3 Line Work Mix** KOSH! 632 91 8.30 19/1/2017 6.40 30/12/2016 310 19 36.40 23/12/2016 1:4 by volume **R-3 Line Work Mix** KOSHI 633 92 20/1/2017 7.80 6.70 31/12/2016 330 185 36.70 24/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 634 93 8.20 20/1/2017 6.50 31/12/2016 330 185 36.70 24/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 635 94 7.90 6.80 23/1/2017 2/1/2017 320 180 36.70 25/12/2016 1:4 by volume High way Man hole KOSH! 636 95 8.40 6.40 23/1/2017 2/1/2017 320 180 36.70 1:4 by volume 25/12/2016 High way Man hole KOSHI 637 96 7.90 24/1/2017 6.40 3/1/2016 355 175 37.10 26/12/2016 1:4 by volume **R-37 Line Work Mix** KOSHI 638 97 7.80 6.50 24/1/2017 3/1/2017 355 175 37.10 1:4 by volume 26/12/2016 R-37 Line Work Mix KOSHI 98 639 7.90 6.50 25/1/2017 4/1/2017 295 195 37.00 27/12/2016 1:4 by volume **R-5 Line Work Mix** KOSHI 640 99 6.90 25/1/2017 8.00 4/1/2017 295 195 37.00 27/12/2016 1:4 by volume **R-5 Line Work Mix** KOSHI 641 100 6.50 8.00 26/1/2017 5/1/2017 325 195 36.90 28/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 627 101 6.70 26/1/2017 7.80 5/1/2017 325 195 28/12/2016 36,90 1:4 by volume WWTP Boundary Wall KOSHI 628 102 8.00 6.10 26/1/2017 5/1/2017 195 325 36.90 28/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 629 103 8.00 26/1/2017 6.40 5/1/2017 325 195 35.90 28/12/2016 1:4 by volume **R-37 Line Work Mix** 630 KOSHI 104 7.90 6.90 26/1/2017 5/1/2017 325 195 36.90 28/12/2016 1:4 by volume R-37 Line Work Mix KOSHI 631 105 Required strength on 28 days not less than 7.5 N/MM2 MIN 45m Max 600m 1 CTCE-KALIKA J/V Submitted by Project Manager Approved by Construction Supervision Engineer/CSE Test conducted by Q.C Manager atal Test Checked by A.C.S.E **Contractore Reps** Consultants Reps

		TEST	RESULT SUI	MMARY SHEET F	or the Month of J	ANUARY 2017	
		COMP	RESSIVE ST	RENGTH OF BRIG	CKS (Process Con	trol Test)	P.G-1
SN No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
1	MR 501	2/1/2017	WWTP	WWTP WALL	ANAND	10.5	1
2	MR 502	2/1/2017	WWTP	WWTP WALL	ANAND	10.4	
3	MR 503	3/1/2017	Highway	Man Hole	ANAND	10.6	
4	MR 504	4/1/2017	R-28	R-28	ANAND	10.2	
5	MR 505	5/1/2017	R-26	R-26	ANAND	10.9	
6	MR 506	6/1/2017	Prativa	Prativa chowck	ANAND	10.8	
7	MR 507	7/1/2017	Prativa	Prativa chowck	AMBEY	10.4	
8	MR 508	8/1/2017	R-29	R-29	AMBEY	10.4	
9	MR 509	9/1/2017	R-29	R-29	SHREE	8.5	Rejected From Site
10	MR 510	9/1/2017	R-29	R-29	SHREE	/7.9	-do-
11	MR 511	10/1/2017	R-37	R-37	ANAND	10.2	
12	MR 512	11/1/2017	Highway	Man Hole	ANAND	10.2	
13	MR 513	12/1/2017	WWTP	WWTP WALL	ANAND	10.5	
14	MR 514	13/1/2017	WWTP	WWTP WALL	ANAND	10.4	-
15	MR 515	14/1/2017	WWTP	WWTP WALL	AMBEY	10.4	
16	MR 516	16/1/2017	R-26	R-26	ANAND	10.1	
17	MR 517	16/1/2017	R-26	R-26	ANAND	10.7	
18	MR 518	16/1/2017	R-27	R-27	ANAND	10.6	
19	MR 519	17/1/2017	R-37	R-37	ANAND	/10.4	
20	MR 520	18/1/2017	WWTP	WWTP WALL	ANAND	/10.5	-
1	· Specific			· · · ·	IS1077,IS2180or NS1/2035	>-10N/MM2	
	Appro	oved by Construct	QUA-BDA-CEM tion Supervision H ed by A.C.S.E	ngineer	8	CTCE-KALIKA J/V Submitted by Project Man est conducted by Q.C.Mar Contractor Reps	ager "

SECONDARY TOWNS INTEGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

MONTHLY Test Result Summary Sheet For The Month of **JANUARY 2017**

Graded Crushed Stone Base Course (Process Control)

P.G-2

STIUEIP

STANDARD SPECIFICATION FOR ROAD AND BRIDGE WORKS SECTION 1200 Table 12.3 Physical Requirement of Graded Crushed Stone Base

	LAB	Date	*			Grad	ing sie	eve size	e (mm)	1		Fl	CR	LAA	AIV	SSS	Soaked	Lab.	Lab.	
SN	REF	Tested	Location/ Chainage	/	1.7	(%	passin	g by w	eight)				Ratio	LAA		5 cycle	CBR	MDD	омс	Remarks
277	No			40	31.5	20	10	4.75	2.36	0.60	0.075	%	(%)	(%)	(%)	(%)	(%)	(g/cc)	(%)	
13	104	3/1/2017	CH:3+670 to 3+720 RHS	100	95.9	70.5	50.4	37.5	27.2	13.9	5.2	17.21	87.7	33.88	20.00	1.24				
14	105	3/1/2017	CH:3+720 to 3+770 RHS	100	96.3	69.9	49.8	37.4	27.0	13.8	5.2	19.12	86.2	33.56	19.71					
15	106	3/1/2017	CH:3+770 to 3+820 RHS	100	97.3	83.9	57.2	43	30.1	15.3	5.5	17.81	85.9	33.68	17.71	1.04				
16	107	3/1/2017	CH:3+820 to 3+870 RHS	100	97.5	87.1	57.3	43.1	30.3	15.2	6.1	19.87	86.1	32.68	18.29		94	2.320	6.20	
17	108	3/1/2017	CH:3+870 to 3+920 RHS	100	97.7	87.3	57.7	41.1	27.9	14.6	6.1	19.06	86.8	33.20	17.71	1.28				
18	109	3/1/2017	CH:3+920 to 3+970 RHS	100	94.8	84.3	56.6	40.5	26.3	13.8	5.9	19.01	85.7	32.60	20.86					
19	110	3/1/2017	CH: 3+970 to 4+020 RHS	100	95.8	85.3	57.1	40.4	25.9	13.9	5.1	17.49	85.7	32.60	19.14	1.28		τ.		
20	111	3/1/2017	CH:4+020 to 4+050 RHS	100	96.8	86.1	56.9	41.5	28.8	15.0	6.4	18.21	85.5	33.68	18.57					
21	112	3/1/2017	CH:4+050 to 4+100 RHS	100	92.2	82.3	61.6	40.8	29.5	16.7	7.1	17.89	86.8	33.80	18.29	1.16	90	2.320	6.20	
22	113	3/1/2017	CH:4+100 to 4+140 RHS	100	92.6	81.4	61.1	40.6	29.2	16.2	6.5	17.71	88.8	32.20	19.14					
23	114	4/1/2017	CH:3+300 to 3+420 RHS & LHS	100	93	81.9	62.7	42.3	30.6	16.5	6.5	16.85	88.2	33.20	20.00	1.08	91	2.310	6.40	
24	115	4/1/2017	CH:3+340 to 3+380 RHS & LHS	100	93.7	83.3	63.6	42.6	30.2	16.4	6.4	19.72	90.0	32.52	20.00	1.32				
25	116	4/1/2016	CH:3+340 to 3+380 RHS & LHS	100	95.6	83.9	63.8	41.6	28.3	17.9	6.4	17.25	90.6	32.08	20.86	1.44				
	Req	quired Sp	ecifacation	100	85-100	62-92	40-70	26-55	21-53	12 to28	2 to10	≤ 25	<u>≥</u> 80	<u>≤</u> 35	≤ 25	Max 12%	≥ 80			
REN	ARK	S:Crush	ed Stone base																	
		bane-AQ	UA-CEMAT-BDA							CTCE	-KALI			ner		A CO	the and	1		

Test Checked by A.C.S.E

Consultant Reps

Submit by Project Manager Test Conducted by Q.C Manager **Consultant Reps**

			CEN	ENT TEST	SUMMER	RY		
	For	the Month of JANL		and the second se				P.G-
S.N.	Lab. Ref.	Description of cement	Testing	Consiste	ncy & Setti	ng Time	Remarks	1.0-
1	NO.	01111/11/0000	Date	Norm. Const.	Intial(min.)	Final(min.)		
	MR 196	SHIVAM OPC	1/1/2017	36.9	190	320	All Cement	
2	MR 197	SHIVAM OPC	2/1/2017	37.6	190	330	Are	
3	MR 198	SHIVAM OPC	3/1/2017	36.7	200	305	Nepali	
4	MR 199	SHIVAM OPC	4/1/2017	37.9	180	335	BRAND	
5	MR 200	SHIVAM OPC	5/1/2017	36.9	180	200		
6	MR 201	SHIVAM OPC	6/1/2017	37.1	180	200		
7	MR 202	SHIVAM OPC	7/1/2017	37.0	250	300		
8	MR203	SHIVAM OPC	8/1/2017	36.3	185	320		
9	MR 204	SHIVAM OPC	8/1/2017	36.0	185	330		
10	MR 205	SHIVAM OPC	9/1/2017	36.4	180	320	OPC	
11	MR 206	SHIVAM OPC	10/1/2017	37.6	175	335		
12	MR 207	SHIVAM OPC	11/1/2017	36.9	195	295		
13	MR 208	SHIVAM OPC	12/1/2017	37.9	190	330		
14	MR 209	SHIVAM OPC	13/1/2017	38.0	200	320		
15	MR 210	SHIVAM OPC	14/1/2017	37.9	205	335		
16	MR 211	SHIVAM OPC	15/1/2017	38.0	205	315		
Requi	rements in acc	cordance with BS 12/4027			> 45 Min.	10 Hrs		
pprovest Cl	Brisbane-AQU red by C.S.E necked by A.C tant Reps			CTCE-KALIKA Submitted by Test Conduct Contractores	A J/V Project Ma ed by Q.C	anager	Jur!	

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant City

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M20/20 SLAB CASTING WORK MIX FOR THE MONTH OF JANUARY 2017 P.G-1

	Lab Dat	-			1				-	1	G-1		
5.N.	Lab Ref No.	Date of Casting	Deatails of Mix	Location	Ra	tio by VOL	UME		м	aterials	Cube Cr	ushing ,N/mm2	Remarks
1	163	4/12/2016	M20 Work mix	Structure		Cement	Sand	Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
-				SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.4	
2	164	5/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.3	
3	165	6/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.0	22.6	
4	166	7/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.7	
5	167	8/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	/		
6	168	9/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5			16.3	22.4	
7	169	10/12/2016	M20 Work mix	SLAB YARD	0.50			-	SHIVAM	Om shree C/plant	16.4	/22.4	
8	170	11/12/2016	M20 Work mix			1	2	3.5	SHIVAM	Om shree C/plant	17.0	/22.2	
9	171	16/12/2016		SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.5	22.1	
-			M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	-17.0	22.7	
10	172	16/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.0	22.2	
11	173	16/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.6	22.6	
2	174	17/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.0		-
3	175	17/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM		/	22.4	
4	176	18/12/2016	M20 Work mix	SLAB YARD	0.50	1	2			Om shree C/plant	16,9	22.6	
5	177	18/12/2016	M20 Work mix	SLAB YARD	1			3.5	SHIVAM	Om shree C/plant	16.4	22.1	
6	178	18/12/2016			0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.9	22.5	
-			M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	/ 22.2	
7	179	19/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.2	22.8	
8	180	19/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.3	22.4	-
1 5	Specifaca	tion Limit Ta	ble For M20/20 on 7	days Age Min 67% of 1	Total Co	npressive	Streng	ath			1		
opr est	C-Brisban oved by (ne-AQUA-BE Construction by A.C.S.E	DA Supervision Engin	neer/CSE	CTCE- Submi Test co	KALIKA tted by	A J/V Proje	ct Manag Q.C Man	ger ager	1 18/00	HERE &	3.4 20	,

Source

	- + -	SUMM	ARY OF CUE	E COMPRESS	VE S	TRENG	ATH T	EST M3	30/20 MAN	HULE CAST	P.G-1		
			FOR TH	E MONTH OF J					Ма	terials		shing ,N/mm2	Remarks
5.N.	Lab Ref No.	Date of Casting	Deatails of Mix	Location		cement		Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	=
1	MR 138	4/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.5	31.6	-
2	MR 139	4/12/2016	M30 Work mix	MANHOLE YARD	0.36	. 1	1.28	2.14	SHIVAM	Om shree C/plant	24.7	31.5	
3	MR 140	5/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	24.7	31.5	
4	MR 141	6/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.3	
5	MR 142	6/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	31.7	
6	MR 143	7/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.7	31.7	
7	MR 144	7/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	24.3	31.6	1
8	MR 145	7/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.4	31.5	
-	MR146	8/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.3	
9		9/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	21.9	31.4	
10			M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.6	31.9	
11		10/12/2016		MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	25.0	31.6	
12		10/12/2016	M30 Work mix		0.36	1	1.28		SHIVAM	Om shree C/plant	22.4	31.6	
1:	8 MR 150		M30 Work mix	MANHOLE YARD		1	1.28		SHIVAM	Om shree C/plant	22.5	31.6	
1	MR 151	12/12/2016	M30 Work mix	MANHOLE YARD	0.36		1.28		SHIVAM	Om shree C/plant	22.6	31.9	
1	5 MR 152	12/12/2016	M30 Work mix	MANHOLE YARD	0.36				SHIVAM	Om shree C/plant		31.9	
1	6 MR 153	13/12/2016	M30 Work mix	MANHOLE YARD	0.36		1.28	-		Om shree C/plant		31.6	
1			M30 Work mix	MANHOLE YARD	0.36		1.28	2.14	SHIVAM			.30	
1	Specifaca	ation Limit Tab	le For M30/20 on 7 o	lays Age Min 67% of Tota					MI	n Required 20.	NS STR	la 16	
Ap	proved by	ane-AQUA-BE Construction d by A.C.S.E	DA n Supervision Engi	ineer/CSE	Subn Test	E-KALIKA nitted by F conducted ractors Re	Project d by Q.(Manager C Manager	14	-		目刊	

<u>Annex-8</u>

: Contractor's progress report-January, 2017

Page | 41 Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Biratnagar

Government of Nepal Biratnagar Sub-Metropolitan City, Biratnagar, Nepal Secondary Towns Integrated Urban Environment Improvement Project (STIUEIP) Project Implementation Unit(PIU) Biratnagar, Nepal

Project Directorate (ADB)

Sewerage and Drainage Network, Wastewater Treatment Plant, and Road and Lanes Improvement Subproject STIUEIP/W/BRT/ICB-01

Monthly Progress Report – 38

January 2017

Consultants:

in association with Brisbane City Enterprise Pty Ltd – Australia AQUA Consultant and Associates Ltd – Bangladesh Building Design Authority – Nepal CEMAT Consultants – Nepal

Submitted by:

Address: Kalika tower-6thfloor, Baluwatar, Kathmandu, Nepal. Tel: 01-4439152, 4439153, 4439154, Fax: 01-4439155. E-mail: <u>info@kalikagroup.com</u>, Site Office: Katahari Tel. 9852024596 E-mail: <u>kalikabrt@gmail.com</u>

Table of Contents

- 1. Introduction
- 2. Project Component
- 3. Salient Feature
- 4. Scope of Work
- 5. Physical Progress (Achievement in up to this Month)
 - a. Storm Drainage and Road Side Drain
 - b. Sewerage
 - c. Road and lane
 - d. Waste Water Treatment Plant
 - e. Production of Precast Slab at yard
 - f. Production of precast chamber element at yard
 - g. Hume pipe Production
- 6. Financial Progress and Cash Flow
- 7. Details of Safeguard Activities
- 8. Key Issues and Remarks
- 9. Resource Plan
 - a. Details of Contractor's Personnel's at site
 - b. Equipment's at Site
 - c. Material at Site
- 10. Conclusion

ANNEX

- i. Organization Chart
- ii. Site Photographs
- iii. Lab Reports

1 Introduction

Secondary Towns Integrated Urban Environmental Improvement Project (STIUEIP), Department of Urban Development and Building Construction (DUDBC), under the Ministry of Urban Development (MUD) through the Government of Nepal (GoN) has received the loan from Asian Development Bank (ADB) Loan 2650-NEP. STIUEIP includes construction of Sewerage and Drainage Network, Wastewater Treatment Plant, Road and Lanes Improvement and additional of road side drain & water supply work. The main purpose of this project is to fascinate with better improvement of greenery urban city.

2 **Project Components**

The Town Integrated Urban Environmental Improvement Project (STIUEIP) consists of following Sub-Project Components:

Drainage Network

The main aim of drainage network is to drain out storm water to the river side during the monsoon season and minimized the water pounding in the city

Sewerage Network

Management of household sewerage project to the treatment plant in connection with chambers, manhole and pipes

Wastewater Treatment Plant Subproject

Treatment of sewer product in plant located at Jatuwa. The treated water is drain out to singhya river and solid waste project used as fertilizer in farming.

Road and Lanes Improvement Subproject

Existing road sections at different part of Biratnagar will be upgraded by extending road width and providing footpath.

Road Side Drain and Water Supply Network (Additional)

Road side drain and water supply network is addition of scope of work in this project. Road side drain is proposed to discharge the rain water. Whereas water supply work is for relocation of existing water pipe lines to appropriate location as well as repair of damaged pipe lines during construction

3 Salient Feature

A. General Features	
	Government of Nepal(GoN),
	Ministry of Urban Development
Employer	Department of Urban Development and Building Construction
Funded By	Asian Development Bank & Government of Nepal
	Biratnagar Sub-Metropolitan City
	Secondary Towns Integrated Urban Environmental Improvement
Project	Project(STIUEIP)
Contract No.	STIUEIP/W/BRT/ICB-01
Location	Biratnagar Sub-Metropolitan City
Consultant	SMEC-Brisbane-AQUA-BDA-CEMAT
Contractor	CTCE-KALIKA JV.
Commencement Date	December 8th, 2013
Original Completion Date	25 May 2016
Revised Completion Date	09 March 2017
Original Contract Period	900 Days
Original Contract amount	
with PS & VAT	NRs 2,391,332,117.06
Revised Contract amount	
after VO # 03. with PS &	
VAT (under process)	NRs 2,974,788,517.62

4 Scope of works

The activities to be undertaken according to the Contract Agreement are as follows:

- a. To carry out all necessary topographic surveys, soils investigations, laboratory analysis or related investigations where necessary to supplement the data provided by the Employer.
- b. To prepare working drawings for all elements of the Works.
- c. To undertake all steps necessary for upgrading of roads and bridges, all related to access to the Site, or other related matters, where his opinion differ significantly from
- d. Preparation of stockyards for pipes, fittings and other materials and equipment.
- e. To take all steps necessary for the temporary or permanent diversion of services and the maintenance of services during the execution of the Works, including diversion of overhead with underground power lines, telephone ducts, water supply mains and distribution lines (pipes), sewers and other underground services as required along the route of the pipelines.
- f. To supply all pipes, valves, fittings and other materials and equipment required for construction of the Works. The Contractor's supply items may include manufacture, collection, transportation and delivery to Site. The Contractor will be responsible for ensuring that all procedures are adequately covered and that the materials fully confirm to the Contract requirements. These responsibilities will include all necessary charges or dues related to insurance, freight, taxes (including customs and excise duties, surcharges etc.) and all testing and inspections for quality control.
- g. To provide all necessary staff (including civil engineers, specialists, administrators, site supervision personnel) and workmen (including all necessary specialists, operators, tradesmen, artisans etc. in addition to semi-skilled and unskilled workers) necessary for execution of the Works through to completion. Where appropriate, the contractor shall provide all suitable facilities and accommodation for the staff and workmen and he shall make provision for all costs related to such provisions and for medical, re-location, taxes or other expenses.
- h. To provide all equipment, machinery, tools etc. and related spares, maintenance and consumables necessary for implementation of the Works.
- i. To provide all site offices, stores, workshops and facilities necessary for use by the Employer, Engineer and support staff and for the Contractor himself and his supporting staff.
- j. To undertake all operations necessary to complete the Works. These operations shall include: excavation, provision, haulage and installation of suitable bedding and backfill material and disposal of surplus excavated material; distribution, laying adjoining of pipes; installation of

all special pipe work, valves etc. and construction of all related concrete or other activities together with all testing and disinfection of completed Works. The Contractor's attention is drawn to the restricted working space between Rajbanshi Chowk to Rani, Biratnagar where the sewer pipes, drains and road/lane is to be laid in a narrow road. In this section work in addition to that associated with the trunk main, will include but not be limited to, removal and replacement of a sewer laid in the road and reinstatement of road surface.

- k. To liaise with other contractors on the site and to ensure harmonious co-operation with them so that conflicts are avoided and areas of common interest, constructional interface or potential overlaps are addressed without cost to the Employer or delays in completion.
- 1. To prepare documentary records of the Works in the form of "as-built" drawings and GIS data, schedules etc., and to train staff of the Employer in the procedures for laying pipes, valves and fittings.
- m. All the above activities shall be performed in a professional way and with good engineering and/or constructional practice. Upon completion of the Works the scheme shall be fully operational with minimum disruption or inconvenience to interested parties, including land owners, and there shall be no outstanding matters requiring attention.

5. Physical Progress (Achievement till the month)

A. Storm Water Drain and Road Side Drain Sub-Project (Work Progress till the date)

SN	Description	Unit	Total Up to	This	Total Up to to	Remarks
			Previous Month	Month	this Month	
1	Northern Part	Rm	23916.56	80	23996.56	
2	Southern Part	Rm	5669.00	0	5669.00	
3	Road Side Drain	Rm	18679.40	3260.6	21940.00	

В.	Sewerage	Sub-Projec	t (Work	Progress	till the	e date)
----	----------	------------	---------	----------	----------	---------

SN	Description	Unit	Total Up to	This	Total Up to	Remarks
			Previous	Month	this Month	
			Month			
1	Hume Pipe	Rm	10553.3	1461.7	12015.00	
2	HDPE Pipe	Rm	21699.25	1003.8	22703.05	
3	uPVC Pipe	Rm	4024.52	2103	6127.52	

4	Manhole (Brick and	Nos	1079	42	1121.00
	RCC)				
5	Sewer Inlet	Nos.	978	353	1331.00
6	House Connection	Nos.	349	40	389.00

C. Road improvement Works (Work Progress till the date)

SN	Description	Unit	Total Up to	This	Total Up to Remarks
			Previous Month	Month	this Month
1	Asphalt pavement in R2 Road	Rm	2213	988	3201.00
2	Gravel road	Rm	1580	2604	4184.00

D. Wastewater Treatment Plant Sub-Project (Work Progress till the date)

S.N.	Description of Work	Progress	This month	Remarks
1	Anaerobic Pond	Excavation complet	ed	
2	Facultative Pond	Excavation Comple	ted	
3	Boundary wall construction	1278.00n	n	
4	Office cum lab building, WWTP,	Completed		
	Jatuwa			
5	Workshop Building &	Completed		
	Generator/Changing Building,			
	WWTP, Jatuwa			
6	Sump Well	Under construction		
7	Sludge Drying Bed	Under construction		
8	Guard House	Under construction		
9	Road side drain	Under construction		
10	Outfall of diversion chamber	completed		
12	Chamber gates	2 Nos		
13	River training work	600m		

SN	Description	Unit	Total Up to	This	Total Up to	Remarks
			Previous Month	Month	this Month	
1	Slab	Rm	91405	1650	93055	
2	Precuts	Rm	11209	0	11209	
3	Kerbstone	Rm	23135	0	23135	
4	Manhole	Nos	2200	0	2200	
5	Sewer inlet	Nos	2074	150	2224	
6	House chamber	Nos	1346	0	1346	

D. Production of Precast Items from Slab Casting Contractor's Yard, Katahari

F. Hume Pipe Production from Hume Pipe Production Factory, Itahari

SN	1	2	3	4	5	6	7	8	9	10	11
Diameter	200mm	300mm	350mm	400mm			600mm	700mm	900mm	1000mm	1600mm
	?	?	?	?	?	?	?	?	?	?	?
No of Moulds	38	3	2	2	2	3	8	8	2	4	2
Production Til											
Previous											
Month	2123	328	216	370	84	551	963	1296	278	1011	373
This Month											
Production	0	0	0	0	0	0	0	0	0	0	0
Total											
Production	2123	328	216	370	84	551	963	1296	278	1011	373

H. Next month program

- 1. Road side drain.
- 2. Laying of sub base with proper compaction in roads
- 3. Precast production at contractor's yard.
- 4. Laying of sewerage pipe and installation of manhole, sewer inlet, house chamber
- 5. Relocation of water supply pipe.
- 6. Construction work of components of waste water treatment plant

6. Financial Progress and Cash Flow

Financial Progress

Installment Number	Total Bill Amount With Vat and PS(NRs)	Net Payable Amount (NRs.)	%	Remarks
IPC 01		200,940,000.00		Advance Payment 01
IPC 02	29,553,479.92	27,853,500.98		IPC 2
IPC 03	50,406,775.75	47,507,270.95		IPC 3
IPC 04	44,819,505.68	42,241,392.52		IPC 04
IPC 05	23,380,168.96	22,035,291.99		IPC 05
IPC 06	90,796,339.68	85,573,541.38		IPC 06
IPC 07	80,854,600.52	76,203,672.17		IPC 07
IPC 08	122,334,488.86	115,297,549.23		IPC 08
IPC 09	116,092,187.14	109,414,317.97		IPC 09
IPC 10	132,327,417.89	124,715,663.77		IPC 10
IPC 11	169,853,829.07	160,083,476.07		IPC 11
IPC 12	23,121,515.46	16,931,906.24		IPC 12
IPC 13	85,563,926.44	62,658,539.06		IPC 13
IPC 14	163,562,505.71	119,776,967.67		IPC 14
IPC 15	139,008,112.96	101,795,764.14		IPC 15
IPC 16	137,640,413.95	100,794,196.94		IPC 16
IPC 17	135,118,714.02	98,947,553.85		IPC 17
IPC 18	39,288,088.98	28,770,702.32		IPC 18
IPC 19	76081596.87	55,714,620.72		IPC 19
IPC 20	74,522,638.96	54,572,994.46		IPC 20
IPC 21	152,577,081.94	118,075,775.83		IPC 21
Total amount of Ipc=	1,886,903,388.77	1,769,904,698.27	69.93%	Progress Percentage WRT Contract amount after VO .02 With Vat and PS

Note: Withheld payment of IPC 21 is 76,775,775.84

Installment Number	Total Bill Amount With Vat and PS(NRs)	Net Payable Amount (NRs.)	%	Remarks
IPC 01		200,940,000.00		Advance Payment 01
IPC 02	29,553,479.92	27,853,500.98		IPC 2
IPC 03	50,406,775.75	47,507,270.95		IPC 3
IPC 04	44,819,505.68	42,241,392.52		IPC 04
IPC 05	23,380,168.96	22,035,291.99		IPC 05
IPC 06	90,796,339.68	85,573,541.38		IPC 06
IPC 07	80,854,600.52	76,203,672.17		IPC 07
IPC 08	122,334,488.86	115,297,549.23		IPC 08
IPC 09	116,092,187.14	109,414,317.97		IPC 09
IPC 10	132,327,417.89	124,715,663.77		IPC 10
IPC 11	169,853,829.07	160,083,476.07		IPC 11
IPC 12	23,121,515.46	16,931,906.24		IPC 12
IPC 13	85,563,926.44	62,658,539.06		IPC 13
IPC 14	163,562,505.71	119,776,967.67		IPC 14
IPC 15	139,008,112.96	101,795,764.14		IPC 15
IPC 16	137,640,413.95	100,794,196.94		IPC 16
IPC 17	135,118,714.02	98,947,553.85		IPC 17
IPC 18	39,288,088.98	28,770,702.32		IPC 18
IPC 19	76081596.87	55,714,620.72		IPC 19
IPC 20	74,522,638.96	54,572,994.46		IPC 20
IPC 21	152,577,081.94	118,075,775.83		IPC 21
January 2017	180,000,000.00			
Total amount of Ipc=	2,066,903,388.77		76.00%	Progress Percentage WRT Contract amount after VO .02 With Vat and PS

Physical Progress

7. Details of Safeguard activities

Contractor's is fascinating to apply safety measure at site during construction phase. Safety board, Diversion board, safety barriers, personnel's protection equipment to worker, spraying of water to minimize dust pollution

8. Key Issues and Remarks

Following issues were raised in this month

- Submitted Claim No.01 to 07 has not addressed up to this month.
- Lack of major BoQ item such as; Reinforcement, Brickwork, M25 Concrete, shoring etc.
- Delay in approval of VO.03
- > Delay in relocation of telecom pole, cable and chamber in Koshi highway west side
- > Damages of water supply pipe during excavation of drain and sewer line
- Difficult to maintain cash flow due to withheld of payment of IPC 21 till end of this month. (IPC 21 Approved dated 12 January 2017)

9. Mobilized Resource

A. Details of Contractor's Personnel at Site

S.N.	Designation	No.	Remarks
1	Project/ Contract Manager	1	
2	Design/ Construction Engineer	1	
3	Construction Engineer	2	
4	Site Engineers	5	
5	Quality Control Manager	1	
6	Office/ Bill Engineer	1	
7	Junior Engineer	10	
8	Sub-Overseer	6	
9	Mechanical In charge	1	
10	Accountant/ Office Manager	1	
11	Assist. Accountant	2	
11	Lab Assistant	3	
12	Site Supervisor	12	
13	Store Keeper	4	
14	Mechanics	4	
14	Light Drivers	6	
15	Driver / Machine Operator	52	
16	Other Supporting Staffs	38	

17	Skilled Labors	>300
18	Unskilled Labors	> 500

B. Details of Equipment at Site / Contractor's yard

S.N.	Particular	Model/Type		Working Status				
			Capacity	No of used Equipment	Status	Remarks		
А	Vehicle and Equipment							
A.1	Excavators							
	Komatsu Long Boom PC200	PC200		1	Good			
	Komatsu Excavator PC200	PC200		2	Good			
	Komatsu Excavator PC120	PC 120		1	Good			
	Hundai Excavator PC200	PC 200		1	Good			
	Cat Excavator 320	Caterpillar		1	Good			
A.2	JCB							
	JCB Hydra	JCB		1	Good			
	CAT Loader	CAT		2	Good			
	CAT Backhoe	CAT		11	Good			
A.3	Crane/Teller							
	Crane with Teller			1	Good			
	Teller			1	Good			
A.4	Water Tanker							
	Water Tanker		12000 Lt.	1	Good			
	Water Tanker		6000Lt	2	Good			
A.5	Tractors/Tipper							
	Tractors	Indian	3 m ³	12	Good			
	Tipper		15 m ³	4	Good	_		
A.6	Service Vehicle				Good	_		
	Jeep	Pajero	5 door	4	Good	_		
	Pickup	Toyota	4 door	1	Good			
	Motorbike	125CC		10	Good			
A.7	Other Equipment and Tools							
	Kerb Stone Machine Set			1	Good	1		
	Generator	Jackson	125KVA	1	Good	1		
	Generator	Kirloskar	20KVA	2	Good	1		
	Generator	Kirloskar	10KVA	1	Good	1		
	Generator	Honda	5KVA	1	Good	1		
	Generator	Super	5KVA	1	Good	1		
	Generator	Lutian	2.5 KVA	1	Good	1		
	Welding Machine	Oswal,India	650amp	1	Good	1		

				Working Status				
S.N.	Particular	Model/Type	Capacity	No of used Equipment	Status	Remarks		
	Welding Machine		350amp	1	Good			
	Welding Machine		250amp	1	Good			
	Diesel tank with Pump		60000 Ltr.	1	Good			
	Stand Drill Machine	India	1 HP	1	Good			
	Gas Cutter Set			1	Good			
	Pipe Cutter			1	Good			
	Hand Grinder			1	Good			
	Plate Compactor			2	Good			
	Monkey Jumper			3	Good			
В	Concreting Unit							
	Batching Plant CONMAT all Set	CONMAT, India	45 m3/ hr	1	Good			
	Electric Vibrator with Needle			10	Good			
	Bar Bending Machine		4 ton/hr	3	Good			
	Bar Cutter Machine		4 ton/hr	3	Good			
	Manual Mixture Machine			6	Good			
С	Roller							
	Pneumatic Tyre Roller			1	Good			
	Steel Roller			2	Good			
	Asphalt Concrete Production							
	Asphalt Concrete Plant		50 ton/ hr	1	Good			
D	Decanter			1	Good			
	Asphalt Paver Machine			1	Good			
	Air Compressor			1	Good			

10. Conclusion

Construction work activities is going progress even facing various hurdle during work. Delay in VO.03 and contractor's claim processing is imposing deaccelerate the contract work.

January 2017

LAB REPORT SUMMARY

Contractor: CTCE-KALIKA J.V. Site Office: Katahari, Judi

	SECONDA	Mont	NAGAR Sub-M	etropolitan y Testing	Report	_		STI	UEIP
		(For Th	e Month OF	- JANUA	RY 2017)		atte	
1				Sec. 4	TARA TARA	Contr	actors: CT	CE- KALIKA JA	/
onsultants:SMEC-Brisbane-AQUA-CEMAT-BDA			Total No. of Test	Test Performed for this month				Total No. of Test	Demarke
S. No.	Description of Material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Remarks
1	Granular Material/Gravel material	Sieve analysis	80	10	10	0		90	
1		MDD & OMC	16	14	14	0		30	
2	SUB GRADE Preparation asPere Specifacation	Field density	264	140	140	0		404	
		C.B.R	18	14	14	0		32	
3	BRICK WORK	Water Absorption	195	0	0	0		195	
		Compressive Strength	2521	160	150	10		2681	
4	Required Test Masonry Mortar (CM 7.05)	Compressive strength	3057	696	696	0		3753	
5	CONCRETE AGGREGATE	Sieve analysis (20 mm)	310	10	10	0		320	
	Coarse aggregate (20 mm)	LAA	223	10	10	0		233	
		Specific Gravity	16	0	0	0		16	
		FI	236	10	10	0		246	
	Fine aggregate (Sand)	ACV	260	10	10	0		270	
		Sieve analysis	250	44	44	0		294	
6	CONCRETE MIX DESIGN	Concrete mix Design	76	0	0	0		76	
	ConcreteM15/20,M20/20	Compressive strength	456	0	0	0		456	
		Slump test	73	0	0	0		73	

BIRATNAGAR Sub-Metropolitant City

STIUEIP

Monthly Laboratory Testing Report

(For The Month OF- JANUARY 2017)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

Contractors: CTCE- KALIKA J/V

			Total No. of Test		Test Performed	for this mont	h	Total No. of Test	Remarks
S. No.	Description of Material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	
7	CEMENT Required Test						-		
	OPC Cement	Setting time	194	35	35	0		229	
		Normal Consistency	194	35	35	0		229	
8							1	10957	
	Work Mix Test M15,M20,M25,M30	Compressive strength	10345	612	612	0		10337	
9	REINFORCEMENT	Required Test As per Specifacation	80	0	0	0		80	
	Reinforcement tore steel	As per Specification							
10	PAVEMENT MATERIALS Sub Base Materials	Sieve analysis	76	48	48	0		124	
		MDD & OMC	13	9	9	0		22	
		CBR	9	9	9	0		18	
		Field density	168	90	90	0		258	
11	CS Base	Sieve analysis	76	34	34	0		110	
	Crushed Stone Base	MDD & OMC	9	11	11	0		20	
	Material Laying	C.B.R	7	11	11	0		18	
		FI & C.Ratio	76	34	34	0		110	
		LAA	77	34	34	0		111	
		SSS	19	34	34	0	-	53	-
		AIV	76	34	34	0		110	
		Field Density & OMC	125	54	54	0		179	

	SECONDA	ARY TOWNS INTEGRA	GAR Sub-M			NTAL IN	IPROVEM		TIUEIP
		Monthly	Laborator	y Testing	Report				
-		(For The	Month OF	- JANUA	RY 2017)		_	
onsult	ants:SMEC-Brisbane-AQUA-CEN						actors: CT	CE- KALIKA	J/V
			Total No. of Test		Test Performed	for this month	n	Total No. of Test	Remarks
S. No.	Description of Material	Type of test	upto previous month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Kemarka
12	ASHPHALT CONCRETE	Sieve analysis	9	30	30	0		39	
	Combine Mixed	FI	8	16	16	0		24	
		ACV	8	16	16	0		24	
	Individual Ca&FA Test Mix Design	LAA	8	16	16	0		24	
	Individual Ca&FA Test Mix Design BITUMEN TEST 80/100 Bitumen	Sp gravity	4	0	0	0		4	
13	BITLIMEN TEST	Penetration at25.c	2	0	0	0		2	
15		Softeing point(ring ball)	2	0	0	0		2	
	As per DORbook section	Flash point/Fire Point	2	0	0	0		2	
	600 Table 6.14/is 73	Ductility at25.c	2	0	0	0		2	
		Specific at 25.c	2	0	0	0		2	
		Water Content	2	0	0	0	-	2	
		Loss on Heating for 5 hrs	2	0	0	0		2	
		Pen-of residue afte loss on Heating	2	0	0	0		2	
		Solubility in tricloroethylene	2	0	0	0		2	
14	Humpipe Test	Three Edge Bearing Load Test	7	0	0	0		7	200mm to 1600mm 1 each
15	MARSHALL MIX DESIGN	WEARING COURSE	1	0	0	0		1	
16	Marshall Stability Test	Bulk density	60	42	42	0		102	
		Stability	60	42	42	0		102	
		Flow	60	42	42	0		102	
		Air voides	60	42	42	0		102	

BIRATNAGAR Sub-Metropolitant City

STIUEIP

Monthly Laboratory Testing Report

(For The Month OF- JANUARY 2017)

Consultants:SMEC-Brisbane-AQUA-CEMAT-BDA

2

Contractors: CTCE- KALIKA J/V

1

C No.	Description of Material	Type of test	Total No. of Test upto previous		Test Performe	d for this month		Total No. of Test	Remarks
S. No.	Description of Material	Type of test	month	No. of Tests	Passed	Failed	Retest Recommended	upto This month	Conservation of the
		Bitumen extraction	20	16	16	0		36	
		Voids in Mineral Agg	60	42	42	0		102	
		Job mix in AC Plant	22	42	42	0		64	
17	BITUMEN SPREAD TEST								
	Prime coat	Application rate	20	28	28	0		48	
	Tack coat	Application rate	10	28	28	0		38	
18	Machines/Equipment Caliberation of compressive	1000KN Manuall 500 KN Manuall	2	0	0	0	-	2	
	Testing machine C.B.R Machine	50KN/30KN	2	0	0	0	-	2	
	Marshall Stability Machine	50KN/25KN	2	0	0	0	-	2	
19	MISCELLANEOUS		-						
	G.I Wire(Gabion Boxes)		5	0	0	0		5	
	Factory Test Report of Cement		8	0	0	0		8	
	Factory Test Report of Iron Steel		4	0	0	0	-	4	
	Factory Test Report of 80/100 Bitumen		2	0	0	0		2	
	Factory Test Report of UPVC/HDP Pipe		2	0	0	0	+	2	
	UPVC/HDP Pipe Test Result		2	0	0	0		2	
	C = Max Dry Dennsity Moisture Content	LAA = Los Angeles Abra SE=Sand Equivqlent	sion	¥.		Mix Formula		1	ushing Ratio
SSS = So ACV = Ag	dium Sulphate Soundness gregtae Crushing Value rnia Bearing Ratio	SMEC-Brisbane-AQU/ Approved by C.S.E Checked by A.C.S.E Consultant Reps				Submitted Prepaid by	KALIKA J/V by Project Ma Q.C Manager ractors Reps		

			MARY OF FIEL FOR THE MON	TH OF JANU	ART ZUI	1	
	Descri	ption : Field	Density Tests on CH	:6+380 to 7+260	R-3 Road	(DHARAMBA	N Road) P G-1
-	SUE	GRADE					
.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree of	Compaction, %	THICKNESS (CM
-			6+380	2.01	95.2	5.00	10
1		F	6+410	2.01	95.2	5.00	10
2		F	6+440	2.06	97.78	5.50	10
3		F	6+470	2.07	97.92	5.00	10
4		F	6+500	2.05	97.07	5.00	10
5			6+530	2.02	95.87	5.50	10
6			6+560	2.02	95.61	5.00	10
7			6+590	2.05	95.61	5.00	10
8			6+620	2.05	95.61	4.50	10
9			6+650	2.03	96.38	5.00	10
10			6+680	2.03	96.38	5.00	10
11			6+710	2.04	96.46	5.00	10
12	FD 35	13/1/2017	6+740	2.03	96.16	5.00	10
13	-		6+770	2.06	97.80	5.00	10
14	-		6+800	2.07	97.90	5.00	10
15	1		6+830	2.02	95.90	5.00	10
16	7		6+860	2.04	96.62	5.00	10
17	1		6+890	2.05	96.96	4.90	10
18	-		6+920	2.03	96.10	5.00	10
19	1		6+950	2.06	97.69	5.00	10
20	-		6+980	2.04	96.48	5.00	10
2'			7+010	2.02	95.51	5.00	10
2:	-		7+040	2.04	96.71	5.00	10
2	-		7+070	2.02	95.51	5.00	10
2	4	1		2.110	95	OMC <9.5	50
SAT	pproved	l by C.S.E cked by A.(UA-CEMAT-BDA	CTCE-KA Submitted Test Con Contracto	d by Proje ducted by	ct Manager Q.C. Manag	per ur

			MMARY OF FIEL	TH OF JANU	ARY 20	1/		
	Descr	iption : Field	Density Tests on CH	1:6+380 to 7+260	R-3 Road	(DHARAMBA	N Road) P.G-2	
_		B GRADE			-			
.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree o	f Compaction, %	THICKNESS (CM	
25			7+140	2.06	97.7	4.00	10	
25 26		T	7+170	2.09	98.9	5.00	10	
20			7+200	2.04	96.71	5.00	10	
28		F	7+230	2.03	96.42	4.00	10	
20 29		Ē	7+250	2.01	95.20	4.50	10	
30			7+260	2.07	96.42	5.00	10	
00								
					1			
					1		-	
		13/1/2017						
	FD 35	13/1/2017						
	1							
	1				-			
	1				-			
	1						-	
	1				-			
	1							
	1				-			
	1				-			
					05	OMC <9.5	0	
				2.110	95	01010 < 9.5	0	
Ar	proved	sbane-AQL by C.S.E ked by A.C	JA-CEMAT-BDA	CTCE-KA Submitted Test Conc Contracto	by Proje lucted by	ct Manager Q.C Manage	5-1	

		FOR THE MON				
SL			Tests on CH :R	16 ,R13 &		P.G-1
L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree of	Compaction, %	THICKNESS (CM
		0+040	1.92	97.0	6.00	10
		0+080	1.93	97.5	6.50	10
		0+120	1.91	96.46	5.50	10
FD-36	13/01/2017	0+040 R-16 opp	1.96	98.99	5.00	10
		0+080 R-16 opp	1.93	97.47	6.50	10
		0+120 R-16 opp	1.95	98.48	6.00	10
Re	equired (R-	-16 Line)	1.98	95 C	OMC <10.0	
		0+030	1.92	96.5	6.00	10
		0+060	1.93	97.5	6.50	10
		0+090	1.93	97.47	6.00	10
FD-37	D-37 13/01/2017	0+120	1.95	98.48	5.00	10
		0+150	1.95	98.48	6.00	10
		0+180	1.91	96.46	6.00	10
Re	equired (R	-13 Line)	1.98	95 (OMC <10.40	
-		0+030	1.94	98.48	6.00	10
		0+060	1.89	95.94	6.00	10
_		0+090	1.94	98.48	6.00	10
FD-38	13/01/2017	0+120	1.89	95.94	6.00	10
		0+150	1.92	97.46	6.00	10
		0+180	1.95	98.98	6.00	10
Re	equired (R	-26 Line)	1.97	95 (OMC <10.50	
	ED-36	SUB GRADE L/Ref. Date FD-36 13/01/2017 Required (R FD-37 13/01/2017	SUB GRADE L/Ref. No. Date Location/ Area -CL L/Ref. No. Date Location/ Area -CL Photo 0+040 0+030 0+120 0+040 R-16 opp 0+080 R-16 opp 0+080 R-16 opp 0+120 R-16 opp 0+080 R-16 opp 0+120 R-16 opp 0+030 0+060 0+090 0+120 0+050 0+120 0+050 0+150 0+030 0+030 0+180 0+030 0+180 0+030 0+180 0+030 0+180 0+030 0+180 0+030 0+120 0+180	SUB GRADE L/Ref. No. Date Location/ Area -CL MDD Gm/CC FD-36 13/01/2017 0+040 1.92 13/01/2017 0+040 1.92 0+040 R-16 opp 1.93 0+080 R-16 opp 1.93 0+120 R-16 opp 1.93 0+120 R-16 opp 1.93 0+120 R-16 opp 1.93 0+120 R-16 opp 1.93 0+030 1.92 0+060 1.93 0+030 1.92 0+060 1.93 0+090 1.93 0+090 1.93 0+090 1.93 0+120 1.95 0+150 1.95 0+180 1.91 Required (R-13 Line) 13/01/2017 0+030 1.94 0+030 1.94 0+060 1.89 0+130 1.94 0+040 1.92 0+130 1.94 0+150 1.92 0+150 1.92 0+180	SUB GRADE L/Ref. No. Date Location/ Area -CL MDD Gm/CC Degree of FD-36 13/01/2017 0+040 1.92 97.0 0 FD-36 13/01/2017 0+040 1.93 97.5 0 6 0+040 1.91 96.46 0 0+040 R-16 opp 1.93 97.47 0+080 R-16 opp 1.93 97.47 0 0+120 R-16 opp 1.93 97.47 0+120 R-16 opp 1.93 97.47 0 0+120 R-16 opp 1.93 97.47 0+120 R-16 opp 1.93 97.5 0 0 0 0 0 1.93 97.47 0	L/Ref. No. Date Location/ Area -CL MDD Gm/CC Degree of Compaction, % FD-36 13/01/2017 0+040 1.92 97.0 6.00 0+080 1.93 97.5 6.50 0 0+040 1.91 96.46 5.50 0 0+040 R-16 opp 1.96 98.99 5.00 0 0+080 R-16 opp 1.93 97.47 6.50 0 0+080 R-16 opp 1.93 97.47 6.50 0 0+120 R-16 opp 1.98 95 OMC <10.0

			MMARY OF FIEL FOR THE MON	TH OF JANL	JARY 2	017		
			iption : Field Density	Tests on CH:0+0	00 to 0+22	25 R-17 Line	P.G-1	
-	L/Ref.	B GRADE			-		0-1	
5.N.	No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM	
1			0+010	1.90	96.0	5.00	10	
2			0+040	1.89	95.5	6.00	10	
3			0+070	1.95	98.48	5.50	10	
4			0+100	1.92	96.97	6.00	10	
5			0+120	1.94	97.98	5.00	10	
6			0+150	1.89	95.45	5.00	10	
7			0+160	1.89	95.40	5.00	10	
8			0+170	1.91	96.45	5.00	10	
10			0+190	1.90	95.96	5.50	10	
11			0+205	1.91	96.45	5.00	10	
12			0+220	1.94	97.97	5.00	10	
	FD 39	13/1/2017 -	0+225	1.91	96.45	5.00	10	
				1.980	95	OMC <9.70		
App Tes	proved b	oy C.S.E ked by A.C.S	A-CEMAT-BDA	CTCE-KAL Submitted b Test Condu Contractors	by Projecticted by	et Manager Q.C Manager	1 - I	

~	i.	SU	MMARY OF FIEL FOR THE MON				(T-28)	
			iption : Field Density			84 R-17 Line		
		IB GRADE					P.G-1	
S.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM	
1			0+010	1.90	96.1	5.00	10	
2			0+040	1.91	96.7	5.00	10	
3	8		0+070	1.93	97.75	5.50	10	
4			0+100	1.90	96.08	5.50	10	
5			0+130	1.93	97.75	5.00	10	
6			0+160	1.90	96.08	5.50	10	
7			0+200	1.93	97.77	5.00	10	
8			0+230	1.92	97.33	5.00	10	
10			0+260	1.93	97.77	5.50	10	
11			0+300	1.89	95.88	5.50	10	
12			0+340	1.93	97.77	5.00	10	
	FD 40	14/1/2017	0+380	1.93	97.77	5.50	10	
+		*						
-		-						
-		-			-	-		
-		-			-			
-		-						
	-				110			
-					-			
					-			
					-			
-					-			
					-			
				1.975	95	OMC <9.70		
1	~							
App Tes	roved b	by C.S.E ked by A.C.S	A-CEMAT-BDA	CTCE-KALI Submitted b Test Condu Contractors	cted by	t Manager Q.C Manager	1.	

		501	MMARY OF FIEL	TH OF JANL	JARY 2	017	.1-20)
1			ption : Field Density	Tests on CH:0+0	00 to 0+18	3 R-27 Line	0.4
-		B GRADE					P.G-1
5.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM)
1			0+020	1.91	97.1	5.00	10
2			0+050	1.89	96.0	5.00	10
3			0+090	1.90	96.51	5.50	10
4			0+120	1.91	97.09	5.00	10
5			0+150	1.93	97.85	5.00	10
6			0+180	1.90	96.51	6.00	10
-							
		-					-
*		-			-	-	
	FD 40	14/1/2017		-			
_					-		
_		-			-		
_							
-					-		
-					-		-
					-	-	
_							
-					-		
-					-		
_					-		
_					-		-
				1.975	95	OMC <9.70	
4				1		15 Ci	
App	proved I	oy C.S.E ked by A.C.	A-CEMAT-BDA	CTCE-KAL Submitted Test Condu Contractors	by Project	ct Manager Q.C Manager	15-1

			MMARY OF FIEL FOR THE MON	TH OF JANL	JARY 20	017	
	011	Descriptio	n : Field Density 1	Tests on CH:0-	+00 to 0+	-130 R-24 Lin	P.G-1
_	L/Ref.	B GRADE		-	T		
5.N.	No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM)
1			0+010	1.93	96.98	5.00	10
2			0+030	1.95	97.98	5.00	10
3		Ī	0+050	1.91	95.98	5.00	10
4			0+070	1.92	96.48	5.00	10
5			0+100	1.91	95.98	5.00	10
6			0+120	1.90	95.48	5.00	10
-							
	FD 42	14/1/2017					
	FD 42	14/1/2017					
					122.00		
							-
					-		
					-		
					-		
					-		
					-		
				-			
						0110 10 5	
				1.990	95	OMC <10.5	0
Ap	proved I	bane-AQU by C.S.E ked by A.C.	A-CEMAT-BDA	CTCE-KAL Submitted Test Condu Contractors	by Project	ct Manager Q.C Manager	()

			MMARY OF FIEL FOR THE MON	TH OF JANL	JARY 2	017		
		Descriptio	n : Field Density	Tests on CH:0-	+00 to 0+	130 R-23 Lin	e	
	10.00	B GRADE			-		P.G-1	
5.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM	
1			0+020	1.92	95.05	5.00	10	
2			0+050	1.92	95.05	5.50	10	
3		T	0+070	1.97	97.52	5.00	10	
4			0+100	1.97	97.52	5.00	10	
5			0+125	1.96	97.02	5.00	10	
_								
					-			
-								
*		t t						
	FD 42A	22/1/2017						
-								
-								
-								
-								
-								
				2.020	95	OMC <10.50	0	
1					1.50		,	
Apr	proved b	bane-AQUA by C.S.E ked by A.C.S	A-CEMAT-BDA	CTCE-KAL Submitted Test Condu Contractors	by Project	t Manager Q C Manager	1:1	

		Description	FOR THE MON	TH OF JANU	DARY 20)17 35 T3-L-33 Li	ne	
-	SU	B GRADE	T. Tield Density To				P.G-1	
5.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM	
1			0+010	1.91	96.36	5.50	10	
2		Ī	0+030	1.93	97.22	5.00	10	
3	- 4		0+050	1.94	97.73	5.00	10	
4		T	0+070	1.92	96.72	5.00	10	
5		Ī	0+100	1.95	98.24	5.00	10	
6		Ī	0+120	1.92	96.72	4.50	10	
7			0+140	1.93	97.17	5.00	10	
8		0+160	1.92	96.72	5.00	10		
9			0+190	1.95	98.20	5.00	10	
10			0+200	1.94	97.73	5.00	10	
11		D 43 27/1/2017	0+220	1.94	97.73	6.00	10	
12	FD 43		0+230	1.94	97.73	5.00		
1				1.985	95	OMC <10.5	*	
App	proved	by C.S.E ked by A.C.	A-CEMAT-BDA S.E	1.985 CTCE-KAL Submitted Test Condu Contractor	by Projectucted by	OMC <10.5		

			FOR THE MON	TH OF JANU	ARY 20	1 T2 33 A-	Line
	De	escription : B GRADE	Field Density Tes	ts on CH:0+00	10 0+13	113-L-33 A-	P.G-1
5.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree o	of Compaction, %	THICKNESS (CM)
-			0+010	1.91	96.46	5.00	10
1			0+025	1.92	96.97	5.00	10
2		- F	0+050	1.92	96.97	5.00	10
3			0+075	1.94	97.98	5.00	10
4		F	0+100	1.93	97.48	5.00	10
5		-	0+125	1.94	97.98	5.00	10
0							
		-			-	-	
-					-		
	FD 44	27/1/2017			3		
P							
-					4.		
					-		
					-		
	-				-		
-							
-					-		
-	-				-		
-	-						
-	-						
				1.980	95	OMC <10.	60
Ar	proved	sbane-AQU by C.S.E ked by A.C	A-CEMAT-BDA	CTCE-KA Submitted Test Conc Contracto	by Proje lucted by	ct Manager Q.C Manager	

	D		FOR THE MON Field Density Tes	ts on CH:0+00	to 0+16	4 T3-L-33 B-	Line
-	SU	B GRADE	Field Density res				P.G-1
.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree o	of Compaction, %	THICKNESS (CM)
			0+010	1.94	97.98	4.00	10
1 2			0+040	1.95	98.48	5.00	10
3	-		0+070	1.92	96.97	5.50	10
4		-	0+100	1.95	98.48	5.00	10
5		F	0+130	1.93	97.47	4.50	10
6			0+160	1.93	97.47	5.00	10
0							
-							
		1					
-							
-		-					
	FD/44	27/1/2017					
-							
-							
-	1						
	-						
	-						
	-						
-	-						
-	-						
-				1.980	95	OMC <10.	00
-							10 C
		sbane-AQU by C.S.E	JA-CEMAT-BDA	CTCE-KA Submitted	by Proje	ct Managers Q.C Manage	× /

	_		FOR THE MON	TH OF JANU	ART 20	AMAR SEWA	MARG
_	Desc	ription : Field	eld Density Tests	on CH:0+000 L	0 0+177	AMANOLITA	P.G-1
.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree o	of Compaction, %	THICKNESS (CM)
-			0+010	1.94	97.45	5.00	10
1		H	0+040	1.93	96.74	5.00	10
2		1	0+070	1.90	95.26	5.50	10
3			0+100	1.89	95.02	5.00	10
4			0+130	1.92	96.33	4.00	10
5			0+170	1.92	96.33	4.00	10
6							
-							
-		Section 2					
-	FD 46	29/1/2017		-			
-					-		
-							
	1						
-							-
-							
-	1				1		
-							
-							
	1						
-				1.990	95	OMC <9.70)
1							
An	proved	sbane-AQU by C.S.E ked by A.C	S.E	CTCE-KAI Submitted Test Cond Contractor	by Proje lucted by	ct Manager Q.C Manage	1.V

			MMARY OF FIEL	TH OF JANU	JARY 20	017	
	Des	scription : I	Field Density Tests	s on CH:0+00	to 0+150	R-25 DEVI	NARG P.G-1
_		B GRADE			-		P.G-1
5.N.	L/Ref. No.	Date	Location/ Area -CL	MDD Gm/CC	Degree	of Compaction, %	THICKNESS (CM)
1			0+010	1.89	95.10	6.00	10
2			0+040	1.92	96.58	7.00	10
3		Ī	0+070	1.93	97.16	6.00	10
4			0+100	1.91	96.08	5.00	10
5			0+135	1.90	95.47	5.00	10
6		ļ	0+145	1.93	97.16	5.00	10
1							
		-			-		
-		-					
-21-	FD-47	30/1/2017					
-				1			
-							*
-							
-							
-		0					
-			P				
-			No. Ale				
-							
]			1.985	95	OMC <10.5	50
Ap Te	proved st Chec	sbane-AQU by C.S.E ked by A.C. t Reps	A-CEMAT-BDA	CTCE-KAL Submitted Test Cond Contractor	by Proje ucted by	ct Manager Q.C Manage	

	SECON	DARY TOWN	IS INTEGRATED UR	ABAN ENVIRON	MENTA		PROJECT	
				Sub-Metropolit				
		SU	MMARY OF FIE				(-28)	
			FOR THE MON				,	
[Descript	ion : Field De	ensity Tests on R2 c				und About	
				BASE LAYER				
S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	Remarks	
1			1+000 LHS	2.22	98.7	6.00		
2			1+030 RHS	2.20	97.6	5.50		
3			1+050 CL	2.21	98.2	6.00		
4			1+070 LHS	2.17	96.37	6.00		
5			1+100 RHS	2.18	97.07	6.50		
6			1+120 CL	2.20	97.58	6.00		
7		[0+00 East	2.18	96.95	6.00		
8			0+030 East	2.19	97.41	5.00		
9	FD 22	3/1/2017	0+00 West	2.20	97.85	5.00		
10	10 22	5/1/2017	0+030 West	2.20	97.97	5.00		
11	-		0+00 Sourth	2.19	97.41	5.00		
12		-	0+030 Sourth	2.19	97.41	5.00		
_								
					/			
	-			/			-	
			/					
				2.250	95%	OMC <8.50		
ME	C-Brisb	ane-AQUA	-CEMAT-BDA	CTCE-KALIK	AJN	A	No.	
ppr	oved by	C.S.E		Submitted by	Projec	t Manager*	and and	
est	Checke	d by A.C.S	E	Test Conduct	ted by (Q.C Manager	A T	
ons	ultant F	Reps	Joy .	Contractors F		1/1/		

;	SECON	DARY TOWNS	INTEGRATED UR	ABAN ENVIRONI	MENTAL	MPROVEMENT	PROJECT
			Biratnagar S	Sub-Metropolita	ant City		
		SUN	MARY OF FIE	LD DENSITY	TES (IS	:2720:-PART	-28)
	FOR	THE MONT	TH OF JANUAR	XY 2017			P.G-1
		Descript	tion : Field Density	Tests on Ch:R-	24 Line 0	+00 to 0+384	
			SUB	BASE LAYE	R		
S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree of Compaction, %		Remarks
1			0+010 LHS	2.17	97.37	6.50	15
2			0+040 RHS	2.15	96.51	6.00	16
3			0+070 CL	2.15	96.51	6.00	15
4			0+100 RHS	2.18	98.06	6.50	16
5			0+130 LHS	2.18	98.06	6.00	16
6			0+150 CL	2.19	98.27	7.50	15.5
7			0+180 LHS	2.19	99%	6.00	15
8			0+220 RHS	2.18	98.09	7.00	15.5
9	FD 00	04/4/2047	0+260 CL	2.19	98.59	6.00	15
10	FD 29	24/1/2017	0+300 LHS	2.16	96.94	6.00	15
11	-		0+330 RHS	2.17	97.52	7.00	16
12			0+370 CL	2.17	97.52	5.50	16
					-		
					-		
		-		-	-		-
_					-		
-		Requir	ed	2.225	95%	OMC <11.20	15 CM
		Requir	cu		1		
SMEC-Brisbane-AQUA-CEMAT-BDA			CTCE-KALIKA J/V				
App	proved b	by C.S.E		Submitted by Project Manager			
Tes	t Check	ked by A.C.S	S.E BOM	Test Condu	icted by	Q.C Manager	P
Col	nsultant	Reps	7.	Contractors	Reps	111	

S	ECOND	ARY TOWNS	INTEGRATED URA	BAN ENVIRON	IENTAL I	IPROVEMENT F	ROJECT
			Biratnagar S	ub-Metropolita	nt City		
		SUN	MARY OF FIEL	LD DENSITY	TES (IS	:2720:-PART	-28)
	FOR		TH OF JANUAR		_	the second	P.G-1
		Descript	tion : Field Density	Tests on Ch:R-	24 Line 0+	00 to 0+384	
			SUB	BASE LAYE	R		
N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree o	of Compaction, %	Remarks
1			0+010 CL	2.16	97.02	6.00	15
2			0+050 LHS	2.16	97.02	6.50	15.5
3		-	0+090 RHS	2.17	97.12	6.00	15
4			0+130 CL	2.17	97.12	6.00	15
5			0+150 LHS	2.18	97.87	6.00	16
6			0+170 RHS	2.16	97.02	6.00	16
-							
1							
-	FD 30	24/1/2017					
-	-						
-							
-							
-							
-							
-							-
	1						
				*			
	-	Requi	red	2.230	95%	OMC <9.50	15 CM
		Requi	red	2.230	95%	OMC <9.50	
N	IEC-Bri	sbane-AQU	A-CEMAT-BDA	CTCE-KA		1	ALL DE LESS
Ap	proved	by C.S.E		Submitted	by Proje	ct Manager	
Te	est Cheo	ked by A.C.	.S.E			Q.C Manager	HAN -
C	onsultar	t Reps	P.	Contracto	rs Reps		1

	SECON	DARY TOWNS	INTEGRATED UR	ABAN ENVIRONI	MENTAL	IMPROVEMENT	PROJECT
			Biratnagar S	Sub-Metropolita	ant City		
		SUN	MARY OF FIE	LD DENSITY	TES (IS	5:2720:-PART	-28)
	FOR	THE MON	TH OF JANUAR	RY 2017			P.G-1
		Descrip	tion : Field Density	Tests on Ch:R-	26 Line 0	+00 to 0+180	
			SUB	BASE LAYE			
S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree of Compaction, %		Remarks
1			0+010 CL	2.18	97.83	6.00	15
2			0+050 LHS	2.16	96.87	6.00	15.5
3			0+090 RHS	2.19	98.14	6.00	15
4			0+130 CL	2.20	98.56	6.00	15
5			0+150 LHS	2.18	97.83	6.00	15
6			0+175 RHS	2.13	95.37	6.00	15.5
						-	
	FD 31	30/1/2017					
	1001	30/1/2017					
	-						
							_
				*			
		Requir	ed	2.230	95%	OMC <9.50	15 CM
				1	_		
SM	EC-Bris	bane-AQUA	-CEMAT-BDA	CTCE-KAL	KA J/V	15	GI USIIS
App	proved b	by C.S.E		Submitted k	by Projec	t Manager	
Tes	t Check	ked by A.C.S	E good	Test Condu	cted by	Q.C Manager	
Cor	nsultant	Reps	Pi	Contractors	Reps	. 14	/

	SI		Sub-Metropoli	itant Cit	у		
	0.	JMMARY OF FI	ELD DENSITY	TES (IS:2720:-PAI	RT-28)	
	Desc	FOR THE MC					
	Desci	CRUSHED	ty lests on R2 cl	h:3+420	to 3+800 RHS	_	
S.N. No.			STONE BAS	ELAYE	LAYER		
S.N. No.	Date	Location/ Area	MDD Gm/CC Degree of Compaction, %			Depth (CM	
1		3+400 LHS	2.30	99.57	6.00	45	
2		3+440 RHS	2.29	99.13	6.00	15	
3		3+460 CL	2.30	99.57		15	
4		3+480 LHS	2.29	99.13		<u> </u>	
5		3+500 LHS	2.29	99.13	6.00	16	
6		3+520 RHS	2.27	98.26	6.00	15.5	
7		3+540 CL	2.29	99.13	5.00	15.5	
8		3+560 RHS	2.28	98.70	6.00	15	
9 FD 17	4/1/2017	3+580 RHS	2.28	98.70	5.50	15.5	
10		3+600 RHS	2.28	98.70	6.00	15.5	
11 -		3+620 LHS	2.29	99.13	5.00	15	
12	-	3+640 RHS	2.30	99.56	5.50	15.5	
13	-	3+660 CL	2.28	98.70	5.50	15	
4		3+670 LHS	2.30	99.56	6.00	15.5	
5		3+690 RHS	2.28	98.70	6.00	15	
6		3+700 RHS	2.28	98.70	6.00	15	
7	_	3+720 LHS	2.27	98.26	5.00	15	
8		3+740 RHS	2.29	99.13	5.00	40.0	
			2.310	98%	OMC <6.30	15 cm	

11

				PROJECT
OLIMANA DV OF FL	r Sub-Metropolit	ant City		
SUMMARY OF FI	ELD DENSITY	TES (I	S:2720:-PAR	Т-28)
FOR THE MC	ONTH OF JANU	JARY 2	017	
Description : Field Dens	ity Tests on R2 ch	:3+420 to	3+800 RHS	
	STONE BASE	LAYE	R	
N. No. Date Location/ Area	MDD Gm/CC	Degree	of Compaction, %	Depth (CM)
3+760 CL	2.28	98.70	5.00	15
3+770 RHS	2.28	98.70	6.00	15
1 3+780 LHS	2.28	98.70	5.00	15
2 3+790 RHS	2.27	98.26	6.00	15
3 3+800 CL	2.28	98.70	5.00	15
4 3+800 RHS	2.29	99.13	5.00	15.5
		ĸ		
				/
FD 17 4/1/2017				/
		-		
		/		
_				
_				
	4			-
	-			
			0140 - 6 20	45
	2.310	98%	OMC <6.30	15 cm

	c		Sub-Metropoli			
	0	UMMARY OF FIE FOR THE MO		IES (IS:2720:-PAF	RT-28)
	Des					
	2000	CRUSHED				
S.N. No.			STONE BASE LAYER			
S.N. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	THICKNESS (CM)
1		3+800 RHS	2.30	99.14	6.00	16
2		3+820 LHS	2.30	99.14	6.00	17
3		3+840 CL	2.30	99.14	5.50	15
4		3+860 RHS	2.31	99.57	6.00	15
5		3+880 LHS	2.29	98.71	6.00	15
6		3+900 CL	2.31	99.57	6.00	15
7		3+920 LHS	2.29	98.71	6.00	15
8		3+940 RHS	2.28	98.27	6.00	16
9 FD 1	8 5/1/2017	3+960 CL	2.28	98.27	6.00	16
10	0/11/2011	3+980 LHS	2.31	99.57	6.00	15
11	-	4+000 RHS	2.31	99.57	6.00	15
12		4+020 LHS	2.28	98.27	6.00	15.5
13		4+040 RHS	2.28	98.27	5.00	15
14		4+060 LHS	2.31	99.57	6.00	16
15		4+080 CL	2.30	99.13	5.50	16
6		4+100 RHS	2.28	98.27	6.00	15
7		4+120 LHS	2.29	98.71	5.50	15
8		4+140 CL	2.31	99.57	6.00	15.5
			2.320	98%	OMC <6.20	15 cm

	SECON	DARY TOWN	S INTEGRATED UR	ABAN ENVIRON	MENTA		IT PROJECT	
				Sub-Metropolit				
-		SU	MMARY OF FIE				RT-28)	
			FOR THE MON				/	
_		Descriptio	on : Field Density Te	ests on R2 ch:3+	300 to 3	+420 LHS & RH	S	
				STONE BASE LAYER				
S.N.	L/Ref. No.	Date	Location/ Area	MDD Gm/CC	Degree	e of Compaction, %	THICKNESS (CM	
1			3+300 LHS	2.30	99.57	6.00	15	
2			3+310 RHS	2.29	99.13	6.00	15	
3			3+320 LHS	2.28	98.70	6.00	16	
4			3+330 RHS	2.29	99.13	6.00	15	
5			3+340 LHS	2.29	99.13	6.00	15	
6			3+350 RHS	2.30	99.57	6.00	15	
7			3+360 LHS	2.29	99.13	6.00	15	
8			3+370 RHS	2.29	99.13	6.00	15	
9	FD 19	5/1/2017	3+380 LHS	2.30	99.57	6.00	16	
10			3+390 RHS	2.29	99.13	6.00	16	
11	-		3+400 LHS	2.29	99.13	6.00	15.5	
12			3+420 RHS	2.29	99.13	6.00	16	
				/			/	
-		_						
-		-						
		-	/	. /				
				2.310	98%	OMC <6.40	15 cm	
-								
ME	C-Brisb	ane-AQUA-	CEMAT-BDA	CTCE-KALIK	A J/V	a	the	
ppro	oved by	C.S.E		Submitted by Project Manager				
est	Checke	d by A.C.S.I	E ARON	Test Conduct	ed by C	.C Manager	HE BEER HE	
ons	ultant F	Reps	er i	Contractors F	Reps	1. 1		

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant City

> SUMMARY OF FIELD DENSITY TES (IS:2720:-PART-28) FOR THE MONTH OF JANUARY 2017

Description : Field Density Tests on R2 ch:1+000 to 1+120 (LHS& RHS) &2+270 to 2+350(RHS)

CRUSHED	STONE	BASE	LAYER
---------	-------	------	-------

5.N.	L/Ref. No.	Date	Location/ Area				THICKNESS (CM
1			1+030 LHS	2.28	99.1	5.50	15.5
2			1+060 RHS	2.29	99.6	6.00	15.5
3			1+090 CL	2.29	99.56	5.00	15
4	FD-20	9/1/2017	1+120 RHS	2.28	99.13	6.00	15
5			0+010 EAST	2.29	99.56	6.00	15
6			0+010 WEST	2.27	98.70	5.00	16
-	Requir	ed (ch:1+0	000 to 1+120)	2.300	98	OMC <6.70	15 CM
1			2+280 LHS	2.30	99.57	5.00	16
2			2+300 RHS	2.30	99.57	6.00	16
3			2+310 CL	2.30	99.57	5.00	16
4	FD-21	9/1/2017	2+330 LHS	2.29	99.13	6.00	15.5
5			2+340 RHS	2.30	99.57	6.00	15.5
6			2+350 CL	2.29	99.13	5.00	16
-		1 /) to 2+350 RHS)	2.300	98	OMC <6.70	15 CM

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Consultant Reps

Test Checked by A.C.S.E

Test Conducted by Q.C Manager

Submitted by Project Manager

Contractors Reps

CTCE-KALIKA J/V

Secondary Towns Integrated Uraban Environmental Improvement Project **Biratnagar Sub-Metropolitant City**

SUMMARY OF HOT MIX ASPHALT CONCRETE WEARING COURSE TEST RESULTS

Contract Package:STUEIP/W/BRT/ICB/01

MONTH: JANUARY 2017 **Mix Agg Gradation** PRIME COAT TACKCOAT Bitumer % Passing Sieve Sizes mm Application Application Content LAB Date of From Mix Density REF Air Void Stability Location of Work ch: VMA % Flow mm No. Laying Dist. Avg.Tray Dist. NO. Extractio gm/cc % Avg.Tray Spray Spray Spray 20 12.5 4.75 2.00 0.425 0.075 9.5 0.18 Test Spray Rate Rate Rate Rate Lit/m2 % Lit/m2 Lit/m2 Lit/m2 20 17/1/2017 3+430 to 3+630 & 3+430 to 3+470 LHS 1 100 93.65 84.32 58.05 48.09 26.27 13.14 6.36 1.01 1.01 0.48 0.47 5.60 2.322 4.29 16.98 11533 2.83 2 21 17/1/2017 3+430 to 3+630 & 3+430 to 3+470 LHS 100 93.22 84.31 58.24 26.02 48.07 13.30 6.09 1.01 1.00 0.48 0.47 5.65 2.349 3.09 16.04 10858 3.03 22 3 18/1/2017 3+950to 4+170 &3+630 to 3+710 100 93.22 84.10 58.67 47.86 24.97 12.25 5.79 1.01 2.340 1.00 0.45 0.48 5.64 3.13 16.36 10021 3.13 4 23 18/1/2017 3+950to 4+170 &3+630 to 3+710 93.22 100 84.30 58.60 47.70 26.05 12.10 6.08 1.01 1.00 0.45 0.50 5.65 2.346 3.22 16.15 10001 3.42 5 24 19/1/2017 3+710 to 3+950 94.49 84.54 58.49 100.0 47.05 24.6 5.75 12.95 1.01 1.02 0.48 0.49 5.57 2.351 3.11 15.89 10187 3.50 6 25 19/1/2017 3+710 to 3+950 84.54 100.0 94.49 59.60 48.05 25.6 13.15 5.64 1.00 1.02 0.48 0.49 5.56 2.339 16.33 3.62 10220 3.15 7 26 23/1/2017 3+550 to 4+170 100.0 93.64 83.05 59.54 49.16 25.01 12.30 5.41 1.02 1.04 0.50 0.50 5.59 2.345 3.37 16.15 11178 3.27 8 27 23/1/2017 3+550 to 4+170 93.22 100.0 82.42 59.11 48.52 24.79 12.08 5.30 1.02 1.03 0.50 0.50 5.60 2.343 3.43 16.23 11098 3.20 9 28 24/1/2017 3+575 to 4+170 RHS 100.0 93.01 82.52 59.53 48.51 24.99 12.38 5.60 1.01 1.01 0.48 0.51 5.61 2.322 4.26 16.99 11337 3.18 10 29 24/1/2017 3+575 to 4+170 RHS 93.43 24.83 100.0 83.14 59.92 48.69 12.43 5.75 1.01 1.01 0.48 0.51 5.68 2.332 3.76 16.68 11816 3.20 11 30 25/1/2017 0+00 to 0+100 LHS Puspal chowck 100.0 96.19 86.44 60.38 48.31 25 12.71 5.30 1.03 1.02 0.51 0.51 5.60 2.326 4.12 16.83 11736 3.25 12 31 25/1/2017 0+00 to 0+100 LHS Puspal chowck 59.72 24.32 100.0 95.55 86.22 47.85 12.24 5.14 1.04 1.02 0.47 0.51 5.65 2.339 3.50 16.39 11257 3.35 13 32 30/1/2017 3+295 to 3+430 LHS 100.0 96.61 86.23 24.27 60.07 47.26 12.20 5.10 1.02 0.49 1.02 0.50 5.58 2.338 3.42 16.20 11260 3.50 14 33 31/1/2017 3+295 to 3+430 LHS 2 nd line 100.0 96.62 86.20 60.17 47.2 25.1 11.20 5.50 1.02 0.49 1.02 0.50 5.60 2.385 3.50 16.50 11380 3.60 Specifacations 100 80~100 68~90 17~44 1.0 kg/m2 ± 5% 50~79 36~67 9~29 3~10 0-4 to 0-6 Kg/m2 5-6 Min-2.354 3-6 % ≥15 ≥ 8500 2-4 Remarks: SMEC-Brisbane-AQUA-CEMAT-BDA CTCE-KALIKA J/V Approved by C.S.E Submitted by Project Manager akata Test Checked by A.C.S.E Test Conducted by Q.C Manager No. **Consultant Reps**

Contractor Reps

				D			e Check fo				
							:STUEIP/W				
		en:80/100 tage:MC 70			SUMMER	RY FOR TH	HE MONTH	OF JANU	ARY 2017		
SN	Lab Ref No	Date of Priming		tion to	Side of Priming	Area of Priming	Intersection Area m2	Total Area M2	Bitumen Consumption	Application Rate By Deep Lit/m2	Application Rate Bt Tray Test Lit/m2
1	23	10/1/2017	3+430	3+675	LHS	1347.5	37.5	1385	1385	1.01	1.01
2	24	11/1/2017	3+675	4+100	LHS	2337.5	0	23375.5	2450	1.05	1.02
3	25	12/1/2017	4+100	4+170	LHS	385	0	385	400	1.01	1.03
4	26	20/1/2017	3+835	4+160	RHS	1787.5	105	1892.5	1950	1.03	1.02
5	27	21/1/2017	3+380	3+335	RHS	2502.5	90	2592.5	2650	1.02	1.01
6	28	22/1/2017	0+000	0+100	LHS						
			3+295	3+380	RHS		220	1237.5	1250	1.010	1.010
	-	Required	d specifi	cation for	Prime co	at 1.0 Lit/I	V12 ± 5% S	Specific (Gravity of E	Bitumen 1.0	25
Ap Tes	EC-Bri proved at Chec		QUA-CE	MAT-BDA			1	CTCE- Submit Test C	KALIKA J/	v ject Manag By Q.C Man	er

-	-		SUMMARY	OF CUBE COMPRES	SIVE S	nagar TREN	GTH	TEST N	120/20 , M2	5/20 & M30/20	Work	Mix	
-	Lab	OR THE	MONTHOF	JANUARY 2017							P.G-1		
S.N.	Ref No.	Date of Casting	Deatails of Mix	Location		Ratio			(of Material	Cube Cr	ushing ,N/mm	2 Remarks
1	649	9/12/2016	M25 Work Mix	S-9 Line Top Slab	0.46	1	1.5	Aggregates 3.25	Cement Brand Shivam	Aggregate/Sand Om shree C/plant	7 days 18.30	28-Days 26.74	
2	650	9/12/2016	M20Work Mix	R-24 Line	0.50	1	2	3.5	Shivam	Om shree C/plant	16.59	22.00	
3	651	10/12/2016	M20Work Mix	R-5 Line	0.50	1	2	3.5	Shivam	Om shree C/plant	16.44	21.70	
4	652	10/12/2016	M20Work Mix	R-3 Line	0.50	1	2	3.5	Shivam	Om shree C/plant	16.00	21.19	
5	653	10/12/2016	M20Work Mix	R-37 Line	0.50	1	2	3.5	Shivam	Om shree C/plant	16.44	/22.07	
6	654	10/12/2016	M20Work Mix	R-37 Line	0.50	1	2	3.5	Shivam	Om shree C/plant	16.96	22.44	
7	655	22/12/2016	M30 Work Mix	Slum Well 1 st Lift WWTP	0.36	1	1.3	2	Shivam	Om shree C/plant	ź2.89	/ 31.85	Add mix=0.5%
8	656	22/12/2016	M30 Work Mix	Slum Well 1 st Lift WWTP	0.36	1	1.3	2	Shivam	Om shree C/plant	22.89	32.22	Add mix=0.5%
9	657	23/12/2016	M20Work Mix	S-9 Line	0.50	1	2	3.5	Shivam	Om shree C/plant	17.11	22.00	
10	658	24/12/2016	M25 Work Mix	S-9 Line Top Slab	0.46	1	1.5	3.25	Shivam	Om shree C/plant	/20.74	26.52	
11	659	25/12/2016	M25 Work Mix	S-9 Line Top Slab	0.46	1	1.5	3.25	Shivam	Om shree C/plant	/22.07	/ 26.81	
12	660	3/1/2017	M25 Work Mix	S-9 Line Top Slab	0.46	1	1.5	3.25	Shivam	Om shree C/plant	/20.74	26.81	
_			the second	For M20/20 on 7 days Age Min 67						Min Required	13.4	20	
-				For M25/20 on 7 days Age Min 67						Min Required	16.75	25	
	-		the second second	For M20/20 on 7 days Age Min 67	% of Total (Compress	ive Stre	ngth		Min Required	20.1	30	
ppr	oved	sbane-AQ by Constr ked by A.C	ruction Supervi	ision Engineer/CSE	Subm		y Pro	/ ject Mana y Q.C Mai	iger nager	1 - 1 (H)			

		SUMM	ERY OF LAB TEST (For the Month	RESULT OF S of JANUARY 201		ADE		
S.N.	LAB	DESCRIPTION OF MATERIAL	Line	Chanage/Location	Modified P	roctorGm/CC	CBR	REMARKS
	REF. NO.				MDD	OMC %	%	
1	MR 35	Sub Grade	Dharam badh Road	6+380 to 7+280	2.110	9.50	7.25	
2	MR 36	Sub Grade	R16 Line East & West	0+000 to 0+180	1.980	10.00	6.10	
3	MR 37	- Sub Grade	R-13 Line	0+00 to 0+180	1.980	10.40	6.30	
4	MR 38	Sub Grade	R-26 Line	0+00 to 0+180	1.970	10.50	6.20	.1-
5	MR 39	Sub Grade	R-17 Line	0+000 to 0+225	1.980	9.70	7.1	
6	MR 40	Sub Grade	R-24 Line	0+000 to 0+384	1.975	9.70	6.0	East
7	MR 41	Sub Grade	R-27 Line	0+000 to 0+183	1.970	10.50	6.0	
8	MR 42	Sub Grade	R-24 Line	0+000 to 0+130	1.990	10.50	6.5	West
9	MR 43	Sub Grade	R-23 Line	0+000 to 0+130	2.020	10.50	7.5	
10	MR 44	Sub Grade	R- T3L-33 Line	0+000 to 0+235	1.985	10.50	7.0	1.
11	MR 45	Sub Grade	R-T3L33 A Line	0+000 to 0+131	1.980	10.60	6.50	-
12	MR 46	Sub Grade	R-T3L33 B Line	0+000 to 0+162	1.980	10.00	6.25	
13	MR 47	Sub Grade	R-26 Amar sewa Marg	0+000 to +177	1.990	9.70	6.10	
14	MR 48	Sub Grade	Devi Marg	0+000 to 0+150	1.985	10.50	6.15	- 14-
		AS PER Standard Specification	on For Roade and Bridge w	orksSection 1003(1)/	AASHTO T	193-81	Min 5%	
App Tes	proved I	bane-AQUA-CEMAT-BE by C.S.E ced by A.C.S.E	A	CTCE-KALIKA J Submitted by Pr Test Conducted Contractors Rep	oject Ma by Q.C I			

¥

10

- ARI 0. 1. 1. 1.

_			MONTHLY Test Resul	SUB B	ASE (Drocc	or the	ntrol		UANU	ARY 20				
			6A-Technical Specifacations&D	SUB B	ifacatio	n Sectio	on 1201	(3)C Ph	vsical F	Require	ment		F	P.G-1	
SN	LAB		· · · · · · · · · · · · · · · · · · ·		inacutio	Gradi	ng siev	e size (by weig	mm)			Lab. MDD	Soaked CBR	Lab. OMC	Remarks
No	Ref NO	Date Tested	Location/ Chainage/Station	63	37.5	20	10	5	2.360	1.18	0.075	(g/cc)	(%)	(%)	
	00	1/1/2017	1+050 Puspal Chowck	100	82.73	61.80	47.23	36.92	27.88	20.08	5.55			_	
1	96 97	1/1/2017	1+080 Puspal Chowck	100	80.22	59.81	45.66	35.77	26.32	18.64	6.39				
2	97	2/1/2017	1+100 Puspal Chowck	100	86.09	65.18	50.99	39.42	28.27	19.49	7.90	-			
3	90	2/1/2017	1+110 Puspal Chowck	100	88.73	70.57	58.28	48.47	37.31	23.04	5.30	_		-	
4	100	2/1/2017	Puspal Chowck Round About	100	87.74	71.88	60.37	49.54	37.22	21.75	5.58				
5	101	2/1/2017	Puspal Chowck Round About	100	89.75	67.88	55.92	45.93	34.92	21.41	6.47				
7	102	2/1/2017	Puspal Chowck Round About	100	91.69	72.28	60.25	49.61	38.00	24.86	6.94	-			
8	.102	2/1/2017	1+000 to 1+120 R2 Road	100	91.05	71.03	58.60	47.46	35.96	22.86	6.73	2.25	45.00	8.50	
9	104	10/1/2017	R-19 Line 0+000 to 0+230	100	90.19	71.55	58.98	48.05	36.00	22.80	6.89	2.23	42.00	9.50	
10	104	10/1/2017	R-19 Line 0+000 to 0+230	100	89.96	71.26	58.38	46.88	34.80	21.49	6.72				
11	106	10/1/2017	R-19 Line 0+000 to 0+230	100	87.95	69.56	57.16	46.61	32.59	20.98	6.61		-		
12	107	10/1/2017	R-19 Line 0+000 to 0+230	100	85.41	68.94	55.13	44.17	30.71	19.43	6.32		-		
13	108	10/1/2017	R-19 Line 0+000 to 0+230	100	87.24	69.72	57.74	47.51	33.49	20.87	6.57	-			
14	109	10/1/2017	R-16 Line 0+000 to +215	100	85.18	66.83	54.87	44.96	31.67	19.81	7.24	2.22	40.00	10.00	-
15	110	10/1/2017	R-16 Line 0+000 to +215	100	86.58	68.27	54.15	43.23	30.02	18.36	6.16	-			
10		uired Specifac	ation	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		
		bane-AQUA-C by C.S.E	CEMAT-BDA			v				Subm		roject	Manag	2.	

Test Checked by A.C.S.E

Consultant Reps

Submit by Project Manager Test Conducted by O.C Manage Consultant Reps

				Biratnag	jar Sub	-Metro	polita	nt City	1		ARY 20				STIUEIF
			MONTHLY Test Result	SUB B	ary Sh	Proce	or the	montrol	1 200	JANO	111 20				
										Require	ment		F	P.G-2	
ccor	ding to	Part 2.Section	n 6A-Technical Specifacations&DC	JR Spec	Ifacatio	Gradi	ng siev	0 5170 (mm)	tequire		Lab.	Soaked	Lab.	
SN	LAB	Date Tested	Location/ Chainage/Station				bassing					MDD	CBR	OMC	Remarks
No	NO	Date resteu	Location enanagement	63	37.5	20	10	5	2.360	1.18	0.075	(g/cc)	(%)	(%)	
16	111	10/1/2017	R-16 Line 0+000 to +215	100	88.20	70.99	56.57	44.85	32.14	19.98	6.82				
17	112	10/1/2017	R-16 Line 0+000 to +215	100	90.51	58.79	47.00	34.40	20.98	20.98	5.98				
18	113	10/1/2017	R-16 Line 0+000 to +215	100	89.00	71.00	97.20	45.20	33.44	20.21	6.56				
19	114	10/1/2017	R-1 22Line 0+00 to 0+254	100	90.87	72.58	58.04	47.09	32.63	20.11	6.39				
20	115	10/1/2017	R-1 22Line 0+00 to 0+254	100	90.70	72.49	57.61	46.66	33.59	21.79	6.03				
21	116	10/1/2017	R-1 22Line 0+00 to 0+254	100	91.11	74.11	59.44	46.69	33.46	22.62	6.56			-	
22	117	10/1/2017	R-1 22Line 0+00 to 0+254	100	87.57	68.84	54.54	42.96	30.68	19.78	6.24				
23	118	10/1/2017	R-1 22Line 0+00 to 0+254	100	85.59	66.53	50.48	42.11	30.03	19.77	6.17	2.22	45.00	10.50	
24	119	10/1/2017	R-17 Line 0+000 to 0+255	100	86.89	70.02	54.31	43.56	30.75	19.57	6.33	_			
25	120	10/1/2017	R-17 Line 0+000 to 0+255	100	88.30	70.02	56.08	43.87	34.54	23.39	6.03				
26	121	10/1/2017	R-17 Line 0+000 to 0+255	100	87.54	70.80	59.90	46.68	35.71	22.13	5.61				
27	122	10/1/2017	R-17 Line 0+000 to 0+255	100	88.37	74.91	64.60	49.83	36.38	20.12	6.36				
28	123	10/1/2017	R-17 Line 0+000 to 0+255	100	88.38	73.06	63.00	46.81	31.49	20.61	5.88	2.21	47.00	11.00	
29	124	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	84.32	66.66	52.40	38.33	27.77	19.71	7.02			-	
30	125	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	85.76	66.89	52.81	39.38	29.22	23.47	6.09		-		
	Req	uired Specifac	cation	100	65-95	50-85	40-75	30-60	20-45	15-37	4 to 15		<u>≥</u> 30		

.

SMEC-Brisbane-AQUA-CEMAT-BDA

Approved by C.S.E

Test Checked by A.C.S.E

Consultant Reps

CTCE-KALIKA J/V Submit by Project Manager

Test Conducted by Q.C Manager

Consultant Reps

		SEC	MONTHLY Test Result	Summ	gar Sub ary She	-Metro	r The l	Month	of		ARY 20				STIUEI
-	-			SUB B	ASE (Proce	ss Co	ntrol)					-	.G-3	
ccor	ting to	Part 2.Section	n 6A-Technical Specifacations&DC	R Spec	ifacation	n Sectio	n 1201	(3)C Ph	ysical F	Require	ment			Lab.	
						Gradii	ig sieve	5 5120 (1	,			Lab. MDD	Soaked	OMC	Remarks
SN	LAB Ref	Date Tested	Location/ Chainage/Station			(% p	assing			- 1					Remarks
No	NO			63	37.5	20	10	5	2.360	1.18	0.075	(g/cc)	(%)	(%)	
-			5+480 to 6+380 Dharam Badh Road	100	87.02	67.23	52.61	40.20	29.64	22.84	6.56				
31	126	15/1/2017		100	87.80	68.29	53.56	41.40	30.88	24.12	5.81				
32	127	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	87.32	68.75	53.75	40.70	31.25	24.81	6.60				
33	128	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	87.49	69.45	54.46	41.06	32.12	24.91	6.44				
34	129	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	92.09	71.41	55.28	45.09	32.25	23.99	6.07				
35	130	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	92.08	71.43	57.50	44.64	31.49	23.57	6.50				
36	131	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	91.06	71.58	58.33	46.54	33.28	24.32	6.58	2.220	40.20	10.20	
37	132	15/1/2017	5+480 to 6+380 Dharam Badh Road	100	86.31	65.06	50.40	38.29	31.07	20.73	5.69				
38	133	16/1/2017	0+00 to 0+384 R-24 Line			70.75	56.30	40.21	32.35	20.69	5.79	2.225	42.50	11.20	
39	134	16/1/2017	0+00 to 0+384 R-24 Line	100	91.20		54.82	39.00	30.73	21.39	5.69				
40	135	16/1/2017	0+000 to 0+384 R-24 Line	100	90.19	71.02		40.49	31.16	21.56	6.64	2.230	40.50	9.50	
41	136	18/1/2017	0+00 to 0+183 R-27 Line	100	90.84	70.98	54.19		27.96	20.13	6.36				
42	137	18/1/2017	0+00 to 0+183 R-27 Line	100	89.17	69.78	52.70	38.99		20.10	6.98			-	
43	138	18/1/2017	0+00 to 0+183 R-27 Line	100	86.06	68.97	52.02	38.57	27.89		6.25	-			
44	139	19/1/2017	0+000 to 0+130 R-23 Line	100	88.42	67.66	52.52	39.16	30.41	19.96		-	-		
45	140	19/1/2017	0+000 to 0+130 R-23 Line	100	88.53	66.18	51.81	38.30	27.64	17.65	6.18	0.00	41.50	10.50	
	141	20/1/2017	0+000 to 0+130 R-26 Line	100	87.16	69.55	55.01	42.15	30.73	23.67	6.43	2.22	41.50	10.00	
46	141	20/1/2017	0+000 to 0+130 R-26 Line	100	88.36	72.30	58.90	44.21	31.12	22.84	6.26	-	-	-	
47		20/1/2017	0+000 to 0+130 R-26 Line	100	87.82	71.16	58.05	43.38	32.13	21.90	5.42	1	-	-	
48	143 Rec	uired Specifa		100	65-95	50,-85	40-75	30-60	20-45	15-37	4 to 15		≥ 30		
App Tes	C-Bris roved t Chec		-CEMAT-BDA							Subn Test	E-KALI nit by F Condu sultant	Project	Manag	jer Janage	r

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of	OF JANUARY 2017	Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
5.N.	LAB REF	CEMENT	Location/Structure	Details of Mix	Casting	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
1	No. 527	KOSHI	R-5 Line Work Mix	1:4 by volume	5/12/2016	38.40	220	325	12/12/2016	6:00	1/1/2017	,7.90	
2	528	KOSHI	R-5 Line Work Mix	1:4 by volume	5/12/2016	38.40	220	325	12/12/2016	6.00	1/1/2017	7.90	1
3	529	KOSHI	WWTP Boundary Wall	1:4 by volume	6/12/2016	37.10	225	310	13/12/2016	5.90	3/1/2017	8.00	
4	530	KOSHI	R-31 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2016	6.30	4/1/2017	8.00	
5	531	KOSHI	R-31 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2016	6.10	4/1/2017	8.00	
6	532	KOSHI	R-31 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2016	5.90	4/1/2017	_8.00	
7	533	KOSHI	WWTP Boundary Wall	1:4 by volume	7/12/2016	37.70	210	340	14/12/2016	5.70	4/1/2017	7.80	
8	534	KOSHI	WWTP Boundary Wall	1:4 by volume	7/12/2016	37.70	210	340	14/12/2016	6.30	4/1/2017	7.90	
9	535	козні	R-5 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2016	6.00	4/1/2017	7.90	
10	536	KOSHI	R-3 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2016	6.10	4/1/2017	8.00	
11	537	KOSHI	R-28 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2010	5.70	4/1/2017	7.90	
12	538	KOSHI	R-3 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2010	6.30	4/1/2017	8.00	
13	539	KOSHI	R-5 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/2010	6.10	4/1/2017	8.00	
14	540	KOSHI	R-28 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/201	6.40	4/1/2017	7.90	-
15	541	KOSHI	R-22 Line Work Mix	1:4 by volume	7/12/2016	37.70	210	340	14/12/201	-	4/1/2017	7.90	
10							MIN 45m	Max 600m	Requ	ired strength	n on 28 days i	not less than 7	.5 N/MM2
Ap	proved by	Construction S	upervision Engineer/CSE		Sub Test	E-KALIKA J/ mitted by Pr t conducted ntractore Re	oject Mana by Q.C Ma			1		1.	/

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

FOR THE MONTH OF JANUARY 2017

		Name of		Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
5.M.	LAB REF	CEMENT	Location/Structure	Details of Mix	ousing	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
16	542	ROCHI	R-7 Line Work mix	1:4 by volume	8/12/2016	33.00	235	350	15/12/2016	6.10	5/1/2017	7.90	16
17	543	KOSHI	R-5 Line Work mix	1:4 by volume	8/12/2016	38.00	235	350	15/12/2016	6.50	5/1/2017	8.00	
18	544	козні	R-3 Line Work Mix	1:4 by volume	8/12/2016	38.00	235	350	15/12/2016	6.40	5/1/2017	8.20	
19	545	KOSHI	R-37 Line Work Mix	1:4 by volume	8/12/2016	38.00	235	350	15/12/2016	6.40	5/1/2017	7.90	
20	546	козні	WWTP Boundary Wali	1:4 by volume	8/12/2016	38.00	235	350	15/12/2016	6.40	5/1/2017	7.90	-
21	547	козні	WWTP Boundary Wall	1:4 by volume	8/12/2016	38.00	235	350	15/12/2016	6.30	5/1/2017	7.80	
22	548	KOSHI	R-27 Line Work Mix	1:4 by volume	9/12/2016	37.50	245	350	16/12/2016	E.30	6/1/2017	8.00	
23	549	KOSHI	R-37 Line Work Mix	1:4 by volume	9/12/2016	37.60	245	350	16/12/2016	6.40	6/1/2017	7.80	
24	550	козні	R-5 Line Work mix	1:4 by volume	9/12/2016	37.60	245	350	16/12/2016	6.70	6/1/2017	8.00	
15	551	KOSHI	R-3 Line Work mix	1:4 by volumo	9/12/2015	37.60	245	350	16/12/2010	6.40	6/1/2017	1.90	-
26	552	KOSHI	WWTP Boundary Wall	1:4 by volume	9/12/2016	37.60	245	350	16/12/2010	6.50	6/1/2017	8.20	
27	653	KOSHI	R-31 Line Work mix	1:4 by volume	9/12/2016	37.60	245	350	16/12/2010	6.50	6/1/2017	7.90	
28	554	KOSHI	R-31 Line Work mix	1:4 by volume	9/12/2016	37.60	245	350	16/12/201	6.30	6/1/2017	7.90	-
29	555	KOSHI	R-5 Line Work mix	1:4 by volume	10/12/2016	5 36.90	160	270	17/12/201	6 6.30	7/1/2017	8.00	-
30	556	козні	R-6 Line Work mix	1:4 by volume	10/12/2010	6 36.90	160	270	17/12/201		7/1/2017	8.00	
	1	1					MIN 45m	Max 600n	Requ	ired strength	on 28 days r	not less than 7	.5 N/MM2
Ta	proved by st Checked nsultants I	by A.C.S.E	upervision Engineer/CSE		Subr Test	E-KALIKA J/ mitted by Pro conducted ntractore Re	oject Mana by Q.C Mar			all	N	1. I	1

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of	and the second second	Details of MIX	Casting	Consiste	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cu	be crushing	Remarks
S.N.	LAB REF	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
31	557	KOCH	R-37 Line Work Mix	1:4 by volume	10/12/2016	36.90	160	270	17/12/2016	6.30	7/1/2017	8.20	-#
32	558	козні	WWTP Boundary Wall	1:4 by volume	10/12/2016	36.90	160	270	17/12/2016	6.30	7/1/2017	8.00	
33	559	KOSHI	WWTP Boundary Wall	1:4 by volume	10/12/2016	36.90	160	270	17/12/2016	6.40	7/1/2017	7.90	
34	560	козні	R-37 Line Work Mix	1:4 by volume	11/12/2016	36.00	160	270	18/12/216	6.50	8/1/2017	7.80	
35	561	KOSHI	R-31 Line Work Mix	1:4 by volume	12/12/2016	36.90	160	270	19/12/2016	6.10	9/1/2017	8.30	
30	562	KOSHI	R-37 Line Work Mix	1:4 by volume	12/12/2016	36.90	160	270	19/12/2016	6.50	9/1/2017	8.20	- 240
37	563	KOSH!	R-5 Line Work Mix	1:4 by volume	12/12/2016	36.90	160	270	19/12/2016	6.50	\$/1/2017	8.00	
38	564	козні	WWTP Boundary Wall	1:4 by volume	13/12/2016	37.40	210	275	20/12/2016	6.50	10/1/2017	8.00	1
39	565	KOSHI	WW/TP Boundary Wall	1:4 by volume	13/12/2016	37.40	210	275	20/12/2016	6.00	10/1/2017	8.20	791
40	565	KOSHI	WWTP Boundary Wall	1:4 by volume	13/12/2016	37.40	210	275	20/12/2016	£.70	10/1/2017	8.30	1
41	567	KOSHI	R-7 Line Work Mix	1:4 by volume	13/12/2016	37.40	210	275	20/12/2016	6.50	10/1/2017	8:00	3
42	568	KOSK!	R-5 Line Work Mix	1:4 by volume	13/12/2016	37.40	210	275	20/12/2016	6.70	10/1/2017	8.20	
43	569	KOSHI	R-37 Line Work Mix	1:4 by volume	13/12/2016	37.40	210	275	20/12/2016	6.30	10/1/2017	7.80	
44	570	KOSHI	R-3 Line Work Mix	1:4 by volume	14/12/2016	37.40	175	280	21/12/2016	6.50	11/1/2017	8.30	
45	571	KOSHI	WWTP Boundary Wall	1:4 by volume	14/12/2010	37.40	175	280	21/12/2016		11/1/2017	8.20	
	,					-	MIN 45m	Max 600m	Requ	red strength	on 28 days n	ot less than 7.	5 N/MM2
Tec		by A.C.S.E	upervision Engineer/CSE		Subr Test	E-KALIKA JA nitted by Pro conducted b ntractore Re	oject Manag oy Q.C Man			And Day	Allor S.	1.	/

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

		Name of	OF JANUARY 2017	Details of MIX	Casting	Consiste	ncy & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
.N.	LAB REF	CEMENT	Location/Structure	Details of mix	ououng	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
46	572	KOSH:	WWTP Boundary Wall	1:4 by vo!ume	14/12/2016	37.40	175	280	21/12/2016	6.30	11/1/2017	8.00	
47	573	KOSHI	WWTP Boundary Wall	1:4 by volume	15/12/2016	37.00	215	310	22/12/2016	6.70	12/1/2017	8.40	
18	574	козні	R-37 Line Work Mix	1:4 by volume	15/12/2016	37.00	215	310	22/12/2016	6.40	12/1/2017	8.40	
49	575	KOSHI	R-37 Line Work Mix	1:4 by volume	15/12/2016	37.00	215	310	22/12/2016	6.40	12/1/2017	8.40	
50	576	KOSHi	R-5 Line Work Mix	1:4 by volume	15/12/2016	37.00	215	310	22/12/2016	6.50	12/1/2017	8.70	
51	577	KOSHI	R-5 Line Work Mix	1:4 by volume	15/12/2016	37.00	215	310	22/12/2016	6.70	12/1/2017	8.40	-
52	570	KOSHI	WWTP Boundary Wall	1:4 by volume	15/12/2016	37.00	215	310	22/12/2016	6.40	12/1/2017	8.60	1
53	579	KOSHI	R-3 Line Work Mix	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.40	13/1/2017	_8:40	
54	580	KOSHI	R-3 Line Work Mix	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.10	13/1/2017	8:40	
55	581	KOSHI	R-3 Line Work Mix	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.40	13/1/2017	8.20	4 ⁰⁰¹
56	582	KOSHI	R-37 Line Work Mix	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.10	13/1/2017	8.20	1
57	583	KOSHI	R-37 Line Work Mix	1:4 by volume	16/12/2016	37.10	240	360	23/12/2010	6.70	13/1/2017	8.70	-
5.5		KOSHI	WWTP Boundary Wall	1:4 by volume	16/12/2016	37.10	240	360	23/12/2010	6.40	13/1/2017	-8.70	1. 11
59	-	KOSHI	R-31 Line Work Mix	1:4 by volume	16/12/2010	37.10	240	360	23/12/201	6.30	13/1/2017	8.40	
co	-	KOSHI	R-31 Line Work Mix	1:4 by volume	16/12/2010	37.10	240	360	23/12/216	-	13/1/2017	8.20	1
	1.00						MIN 45m	Max 600m	n Requ		on 28 days n	ot less than 7	.5 N/MM2
Te		by A.C.S.E	Supervision Engineer/CSE		Subr Test	E-KALIKA J/ nitted by Pro conducted I ntractore Re	oject Mana by Q.C Mar			A A A A A A A A A A A A A A A A A A A	D	1.1	1

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

- ----

P.G-5

		Name of	OF JANUARY 2017	Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cul	be crushing	Remarks
5.N.	LAB REF	CEMENT	Location/Structure	Details of Mix	ousing	Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
61	No. 587	KOSHI	High way Man hole	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.40	13/1/2017	. C.70	-92
62	588	козні	High way Man hole	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.30	13/1/2017	8.60	5 ⁻
63	539	KOSHI	High way Man hole	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.70	13/1/2017	8.60	40
64	590	KOSHI	High way Man hole	1:4 by volume	16/12/2016	37.10	240	360	23/12/2016	6.40	13/1/2017	9.00	- 312
65	591	коені	R-37 Line Work Mix	1:4 by volume	18/12/2016	36.60	185	280	25/12/2016	6.40	15/1/2017	-8.80	
66	592	KOSH	R-37 Line Work Mix	1:4 by volume	18/12/2016	36.60	185	280	25/12/2016	6.50	15/1/2017	-7:90	
67	593	козні	R-37 Line Work Mix	1:4 by volume	18/12/2016	36.60	185	280	25/12/2016	6.70	15/1/2017	8.20	-
63	594	KOSHI	R-5 Line Work Mix	1:4 by volume	18/12/2016	36.60	185	280	25/12/2016	6.30	15/1/2017	8.40	-
69	595	KOSHI	R-5 Line Work Mix	1:4 by volume	18/12/2016	36.60	185	280	25/12/2010	6.70	15/1/2017	8.40	-
70	596	KOSHI	R-5 Line Work Mix	1:4 by volume	18/12/2010	6 36.60	185	280	25/12/201	6.70	15/1/2017	8.00	
71	597	KOSHI	R-5 Line Work Mix	1:4 by volume	18/12/2010	6 36.60	185	280	25/12/201	6 6.30	15/1/2017	-	200
72	598	KOSHI	High way Man hole	1:4 by voluma	18/12/201	6 36.60	185	280	25/12/201	6 6.80	15/1/2017	-	-
73	599	KOSHI	Higl: way Man hole	1:4 by volume	e 18/12/201	6 36.60	185	280	25/12/201	6 6.90	15/1/2017		-
74	600	козні	WWTP Boundary Wall	1:4 by volume	e 18/12/201	6 36.60	185	280	25/12/201	6 6.50	15/1/2017	-	
75		KOSHI	R-37 Line Work Mix	1:4 by volum	e 19/12/201	6 36.60	185	280	26/12/201	-	16/1/2017		
	1						MIN 45m	Max 600m	n Requ	uired strength	on 28 days	not less than 7	.5 N/MM2
Ap	proved by st Checkoo	Construction S	Supervision Engineer/CSE		Sub Test	È-KALIKA J/ mitted by Pr t conducted intractore Re	oject Mana by Q.C Ma			A REAL		6	-

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

FOR THE MONTH OF JANUARY 2017

P.G-6

	LAB REF	Name of	I and the of Other shares	Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cub	e Crushing	28 day's cu	be crushing	Remark
S.N.	No.	CEMENT	Location/Structure	1000		Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
76	602	KOSHI	R-37 Line Work Mix	1:4 by volume	19/12/2016	36.60	185	280	26/12/2016	6.80	16/1/2017	8.00	
77	603	козні	WWTP Boundary Wall	1:4 by volume	19/12/2016	36.60	185	280	26/12/2016	6.70	16/1/2017	7.90	
78	604	козні	R-5 Line Work Mix	1:4 by volume	19/12/2016	36.60	185	280	26/12/2016	6.10	16/1/2017	7.90	
79	605	козні	R-5 Line Work Mix	1:4 by volume	19/12/2016	36.60	185	280	26/12/2016	6.80	16/1/2017	8.30	
S 0	606	KOSHI	R-37 Line Work Mix	1:4 by volume	19/12/2016	36.60	185	280	26/12/2016	6.30	16/1/2017	7.90	
81	607	KOSHI	High way Man hole	1:4 by volume	19/12/2016	36.60	185	280	26/12/2016	6.40	16/1/2017	7.90	
82	608	KOSHI	R-7 Line Work Mix	1:4 by volume	21/12/2016	36.30	185	320	28/12/2016	6.70	18/1/2017	7.80	
83	609	KOSHI	High way Man hole	1:4 by volume	21/12/2016	36.30	185	320	28/12/2016	6.50	18/1/2017	8.20	
84	610	KOSHI	High way Man hole	1:4 by volume	21/12/2016	36.30	185	320	28/12/2016	6.70	18/1/2017	8.00	
85	611	KOSHI	R-27 Line Work Mix	1:4 by volume	21/12/2016	36.30	185	320	28/12/2016	6.50	18/1/2017	7.90	
86	612	KOSHI	R-27 Line Work Mix	1:4 by volume	21/12/2016	36.30	185	320	28/12/2016	6.70	18/1/2017	7.80	
87	613	KOSHI	WWTP Boundary Wall	1:4 by volume	22/12/2016	36.30	185	320	29/12/2016	6.30	19/1/2017	8.00	
88	614	KOSHI	WWTP Boundary Wall	1:4 by volume	22/12/2016	36.30	185	320	29/12/2016	-6.40	19/1/2017	7.80	
89	615	козні	R-37 Line Work Mix	1:4 by volume	23/12/2016	36.40	188	310	30/12/2016	6.30	20/1/2017	8.20	
90	616	козні	R-37 Line Work Mix	1:4 by volume	23/12/2016	36.40	188	310	30/12/2016	6.70	20/1/2017	-8.00	
	-						MIN 45m	Max 600m	Requi	red strength	on 28 days n	ot less than 7.	5 N/MM2
Tes		by A.C.S.E	upervision Engineer/CSE		Subm Test	-KALIKA J/V hitted by Pro conducted b tractore Rep	ject Manag y Q.C Man			A Del		1.	~

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar-Sub-Metropolitant City SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE P.G-7 FOR THE MONTH OF JANUARY 2017 Remarks **Consistency & Setting Time** 28 day's cube crushing 7 day's cube Crushing Details of MIX Casting Name of Str. N/mm2 Str. N/mm2 LAB REF Location/Structure Date Date Final(min.) S.N. Intial(min.) Norm. Const. CEMENT No. 19/1/2017 7.90 6.40 30/12/2016 310 19 36.40 23/12/2016 1:4 by volume **R-3 Line Work Mix** KOSH! 632 91 8.30 19/1/2017 6.40 30/12/2016 310 19 36.40 23/12/2016 1:4 by volume **R-3 Line Work Mix** KOSHI 633 92 20/1/2017 7.80 6.70 31/12/2016 330 185 36.70 24/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 634 93 8.20 20/1/2017 6.50 31/12/2016 330 185 36.70 24/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 635 94 7.90 6.80 23/1/2017 2/1/2017 320 180 36.70 25/12/2016 1:4 by volume High way Man hole KOSH! 636 95 8.40 6.40 23/1/2017 2/1/2017 320 180 36.70 1:4 by volume 25/12/2016 High way Man hole KOSHI 637 96 7.90 24/1/2017 6.40 3/1/2016 355 175 37.10 26/12/2016 1:4 by volume **R-37 Line Work Mix** KOSHI 638 97 7.80 6.50 24/1/2017 3/1/2017 355 175 37.10 1:4 by volume 26/12/2016 R-37 Line Work Mix KOSHI 98 639 7.90 6.50 25/1/2017 4/1/2017 295 195 37.00 27/12/2016 1:4 by volume **R-5 Line Work Mix** KOSHI 640 99 6.90 25/1/2017 8.00 4/1/2017 295 195 37.00 27/12/2016 1:4 by volume **R-5 Line Work Mix** KOSHI 641 100 6.50 8.00 26/1/2017 5/1/2017 325 195 36.90 28/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 627 101 6.70 26/1/2017 7.80 5/1/2017 325 195 28/12/2016 36,90 1:4 by volume WWTP Boundary Wall KOSHI 628 102 8.00 6.10 26/1/2017 5/1/2017 195 325 36.90 28/12/2016 1:4 by volume WWTP Boundary Wall KOSHI 629 103 8.00 26/1/2017 6.40 5/1/2017 325 195 35.90 28/12/2016 1:4 by volume **R-37 Line Work Mix** 630 KOSHI 104 7.90 6.90 26/1/2017 5/1/2017 325 195 36.90 28/12/2016 1:4 by volume R-37 Line Work Mix KOSHI 631 105 Required strength on 28 days not less than 7.5 N/MM2 MIN 45m Max 600m 1 CTCE-KALIKA J/V Submitted by Project Manager Approved by Construction Supervision Engineer/CSE Test conducted by Q.C Manager atal Test Checked by A.C.S.E **Contractore Reps** Consultants Reps

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT

Biratnagar-Sub-Metropolitant City

SUMMERY OF MORTAR COMPRESSIVE STRENGTH TEST WORK MIX CUBE

FOR THE MONTH OF JANUARY 2017

P.G-8

	LAB REF	Name of		Details of MIX	Casting	Consiste	ency & Settin	g Time	7 day's cu	be Crushing	28 day's cu	be crushing	Remark
5.N.	No.	CEMENT	Location/Structure			Norm. Const.	Intial(min.)	Final(min.)	Date	Str. N/mm2	Date	Str. N/mm2	
06	632	козні	R-5 Line Work Mix	1:4 by volume	29/12/2016	36.70	185	300	6/1/2017	6.50	27/1/2017	7.90	
107	633	козні	R-5 Line Work Mix	1:4 by volume	29/12/2016	36.70	185	300	6/1/2017	6.40	27/1/2017	7.80	
108	634	козні	R-3 Line Work Mix	1:4 by volume	29/12/2016	36.70	185	300	6/1/2017	6.40	27/1/2017	7.90	110
109	635	козні	R-3 Line Work Mix	1:4 by volume	29/12/2016	36.70	185	300	6/1/2017	6.80	27/1/2017	7.80	
110	636	KOSHI	R-36 Line Work Mix	1:4 by volume	30/12/2016	37.10	195	310	7/1/2017	6.50	28/1/2017	8.30	24
111	637	KOSHI	R-36 Line Work Mix	1:4 by volume	30/12/2016	37.10	195	310	7/1/2017	6.10	28/1/2017	7.80	de.
112	638	KOSHI	WWTP Boundary Wall	1:4 by volume	30/12/2016	37.10	195	310	7/1/2017	6.40	28/1/2017	7.80	
113	639	KOSHI	WWTP Boundary Wall	1:4 by volume	30/12/2016	37.10	195	310	7/1/2017	6.40	28/1/2017	7.90	1
114	640	KOSHI	High way Man hole	1:4 by volume	30/12/2016	37.10	195	310	7/1/2017	6.50	28/1/2017	7.90	
115	641	KOSHI	WWTP Boundary Wall	1:4 by volume	31/12/2016	37.10	195	310	8/1/2017	6.40	29/1/2017	7.80	
116	642	KOSHI	WWTP Boundary Wall	1:4 by volume	31/12/2016	37.10	195	310	8/1/2017	6.70	29/1/2017	7.90	з. ^µ
×				-									-
-													
								May 600m	Pagu	ired strength	on 28 days n	ot less than 7.	5 N/MM2
Test		by A.C.S.E	Supervision Engineer/CSE		Subn Test	-KALIKA J/V nitted by Pro conducted b tractore Rep	ject Manag y Q.C Man		Redu	A DANA		1.	/

		TEST	RESULT SUI	MMARY SHEET F	or the Month of J	ANUARY 2017				
		COMP	RESSIVE ST	RENGTH OF BRIG	CKS (Process Con	trol Test)	P.G-1			
SN No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From			
1	MR 501	2/1/2017	WWTP	WWTP WALL	ANAND	10.5	1			
2	MR 502	2/1/2017	WWTP	WWTP WALL	ANAND	10.4				
3	MR 503	3/1/2017	Highway	Man Hole	ANAND	10.6				
4	MR 504	4/1/2017	R-28	R-28	ANAND	10.2				
5	MR 505	5/1/2017	R-26	R-26	ANAND	10.9				
6	MR 506	6/1/2017	Prativa	Prativa chowck	ANAND	10.8				
7	MR 507	7/1/2017	Prativa	Prativa chowck	AMBEY	10.4				
8	MR 508	8/1/2017	R-29	R-29	AMBEY	10.4				
9	MR 509	9/1/2017	R-29	R-29	SHREE	8.5	Rejected From Site			
10	MR 510	9/1/2017	R-29	R-29	SHREE	/7.9	-do-			
11	MR 511	10/1/2017	R-37	R-37	ANAND	10.2				
12	MR 512	11/1/2017	Highway	Man Hole	ANAND	10.2				
13	MR 513	12/1/2017	WWTP	WWTP WALL	ANAND	10.5				
14	MR 514	13/1/2017	WWTP	WWTP WALL	ANAND	10.4	-			
15	MR 515	14/1/2017	WWTP	WWTP WALL	AMBEY	10.4				
16	MR 516	16/1/2017	R-26	R-26	ANAND	10.1				
17	MR 517	16/1/2017	R-26	R-26	ANAND	10.7				
18	MR 518	16/1/2017	R-27	R-27	ANAND	10.6				
19	MR 519	17/1/2017	R-37	R-37	ANAND	/10.4				
20	MR 520	18/1/2017	WWTP	WWTP WALL	ANAND	/10.5	-			
1	· Specific			· · · ·	IS1077,IS2180or NS1/2035	>-10N/MM2				
	Appro	oved by Construct	QUA-BDA-CEM tion Supervision H ed by A.C.S.E	ngineer	CTCE-KALIKA J/V Submitted by Project Manager Test conducted by Q C Manager Contractor Reps					

		Secon		Biratnagar Sub-Metr		nprovement Projec	L .
	-	TEST	RESULT SUM	MARY SHEET F	or the Month of J	JANUARY 2017	
		COMP	RESSIVE STI	RENGTH OF BRIG	CKS (Process Con	trol Test)	P.G-2
SN No	Ref. STIUEIP LAB/	Date of Testing	Location	Chanage	BRAND NAME 1 st class brick	Compressive Strength N/mm2	SCALE OF Sample From
21	MR 521	19/1/2017	R-29	R-29	ANAND	10.9	
22	MR 522	20/1/2017	R-29	R-29	ANAND	10.5	
23	MR 523	21/1/2017	R-28	R-28	ANAND	10.7	
24	MR 524	22/1/2017	R2	Puspal Chowck	ANAND	10.5	
25	MR 525	23/1/2017	R-37	R-37	ANAND	10.3	
26	MR 526	24/1/2017	R-26	R-26	ANAND	10.4	
27	MR 527	25/1/2017	Highway	Man Hole	ANAND	10.3	
28	MR 528	26/1/2017	WWTP	WWTP WALL	ANAND	10.5	
29	MR 529	27/1/2017	Prativa	Chowck	ANAND	10.2	
30	MR 530	28/1/2017	Prativa	Chowck	ANAND	10.4	
31	MR 531	29/1/2017	WWTP	WWTP WALL	AMBEY	10.2	
32	MR 532	30/1/2017	Highway	Man Hole	ANAND	/10.6	
		3					
	-					4	
	Specifi			1	IS1077,IS2180or NS1/2035	>-10N/MM2	
	Appro	oved by Construc	AQUA-BDA-CEMA ction Supervision En ted by A.C.S.E		r T	CTCE-KALIKA J/V Submitted by Project Mai est conducted by Q.C.Ma Contractor Reps	nager ''

			CEME	ENT TEST S	UMMER	Y		
	For t	he Month of JANU	ARY 201	7				P.G-2
S.N.	. Ref.	Description of cement	Testing	Consister	ncy & Settin	ng Time	Remarks	
N	10.		Date	Norm. Const.	Intial(min.)	Final(min.)		
17 MR	212	KOSHI OPC	16/1/2017	37.6	190	305	All Cement	
18 MR	213	KOSHI OPC	17/1/2017	36.7	140	260	Are	+
19 MR	R 214	KOSHI OPC	18/1/2017	36.3	140	240	Nepali	
20 MR	R 215	KOSHI OPC	19/1/2017	36.1	165	265	BRAND	
21 MF	R 216	KOSHI OPC	20/1/2017	36.6	155	270		
22 MF	R 217	KOSHI OPC	21/1/2017	37.9	190	315		
23 MF	R 218	KOSHI OPC	22/1/2017	37.4	175	305		
24 MF	R 219	KOSHI OPC	23/1/2017	37.9	180	320		
25 MF	R 220	KOSHI OPC	24/1/2017	37.9	195	295		
26 MF	R 221	KOSHI OPC	25/1/2017	37.3	165	250	OPC	
27 MF	R 222	KOSHI OPC	25/1/2017	37.3	165	250		
28 MF	R 223	KOSHI OPC	26/1/2017	35.6	130	240		
29 MF	R 224	KOSHI OPC	27/1/2017	35.0	190	250		
30 MF	R 225	KOSHI OPC	28/1/2017	34.9	140	260		
31 MF	R 226	SHIVAM OPC	29/1/2017	35.4	150	270		
32 MF	R 227	SHIVAM OPC	29/1/2017	35.9	130	280		
33 MF	R 228	SHIVAM OPC	29/1/2017	36.0	120	240		
34 MF	R 229	SHIVAM OPC	30/1/2017	36.4	160	260		
35 MI	R 230	SHIVAM OPC	31/1/2017	36.7	170	265		
	onte in ac	cordance with BS 12/4027			> 45 Min.	10 Hrs		

SECONDARY TOWNS INTEGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

MONTHLY Test Result Summary Sheet For The Month of JANUARY 2017

Graded Crushed Stone Base Course (Process Control)

1 . .

P.G-1

STIUEIP

STANDARD SPECIFICATION FOR ROAD AND BRIDGE WORKS SECTION 1200 Table 12.3 Physical Requirement of Graded Crushed Stone Base

40 100 100 100 100 100 100 100	96.2 96.6 96.8 97.6	20 73.5 75.2 76.5 76.4 69.1 69.9	10 47.3 52.4 52.6 52.8 52.6 52.6 52.6	4.75 35.8 41.1 39.4 38.2 37.2	2.36 28.7 33.1 31.3 29.9 29.6	0.60 18.1 22.1 20.0 18.5 17.2	0.075 5.1 7.1 7.0 6.8	% 18.54 19.03 19.83 18.03	(%) 86.0 88.7 84.1 83.4	 (%) 33.04 32.80 32.88 32.24 	(%) 19.43 19.43 19.43 20.29	(%) 1.56 1.52 1.52 1.41	(%) 92 95	(g/cc) 2.300 2.300	(%) 6.50 6.50	Density pit hol
100 100 100 100 100	96.2 96.6 96.8 97.6	75.2 76.5 76.4 69.1	52.4 52.6 52.8 52.6	41.1 39.4 38.2 37.2	33.1 31.3 29.9	22.1 20.0 18.5	7.1 7.0 6.8	19.03 19.83	88.7 84.1	32.80 32.88	19.43 19.43	1.52 1.52	95			Density pit ho
100 100 100 100	96.6 96.8 97.6	76.5 76.4 69.1	52.6 52.8 52.6	39.4 38.2 37.2	31.3 29.9	20.0 18.5	7.0 6.8	19.83	84.1	32.88	19.43	1.52		2.300	6.50	
100 100 100	96.8 97.6	76.4 69.1	52.8 52.6	38.2 37.2	29.9	18.5	6.8							2.300	6.50	
100	97.6	69.1	52.6	37.2				18.03	83.4	32.24	20.29	1.44				1
100		-			29.6	17.2					A	1.41	90	2.300	6.50	
-	97.6	69.9	54				5.5	15.86	89.9	32.92	23.14	1.73	97	2.310	6.30	
100	1	A DOLLAR STREET, STREE		39.5	30.3	17.9	5.5	18.46	87.8	33.04	21.71	1.80	94	2.320	6.20	
	97.2	72.5	56.1	42.2	33.8	15.6	6.1	17.71	87.1	33.60	19.42	1.64	92	2.310	6.30	
100	97.3	75.6	58.8	43.4	33	15.2	5.8	16.64	86.9	33.88	18.57				7	1
100	97.1	73.5	58.6	44.0	33.0	16.1	5.8	17.50	89.6	33.16	18.00	1.28			/	/
100	97.5	73.8	57.7	42.9	31.8	16.3	5.8	17.1	88.0	33.52	19.71				/	
100	97.3	73.0	56.5	42.2	31.3	15.0	5.3	18.5	88.2	33.68	19.71	1.36		/		
100	95.8	72.1	55.3	41.5	30.3	15.1	5.2	18.6	85.9	33.96	19.71		/			
100	85-100	62-92	40-70	26-55	21-53	12 to28	2 to10	≤ 25	≥ 80	<u><</u> 35	≤ 25	Max 12%	≥ 80			
100	85-100	62-92	40-70	26-55	21-53	12 to28	2 to10	≤ 25	≥ 80	≤ 35	<u>≤</u> 25	1				
s	S 100 S 100 S 100	S 100 97.5 S 100 97.3 S 100 95.8	S 100 97.5 73.8 S 100 97.3 73.0 S 100 95.8 72.1	S 100 97.5 73.8 57.7 S 100 97.3 73.0 56.5 S 100 95.8 72.1 55.3	S 100 97.5 73.8 57.7 42.9 S 100 97.3 73.0 56.5 42.2 S 100 95.8 72.1 55.3 41.5	S 100 97.5 73.8 57.7 42.9 31.8 S 100 97.3 73.0 56.5 42.2 31.3 S 100 95.8 72.1 55.3 41.5 30.3	S 100 97.5 73.8 57.7 42.9 31.8 16.3 S 100 97.3 73.0 56.5 42.2 31.3 15.0 S 100 95.8 72.1 55.3 41.5 30.3 15.1	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 17.1 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 17.1 88.0 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6 85.9	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 17.1 88.0 33.52 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 33.68 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6 85.9 33.96	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 17.1 88.0 33.52 19.71 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 33.68 19.71 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6 85.9 33.96 19.71	S10097.573.857.742.931.816.35.817.188.033.5219.71S10097.373.056.542.231.315.05.318.588.233.6819.711.36S10095.872.155.341.530.315.15.218.685.933.9619.7110085-10062-9240-7026-5521-5312 to 282 to 10 \leq 25 \geq 80 \leq 35 \leq 25Max 12%	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 17.1 88.0 33.52 19.71 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 33.68 19.71 1.36 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6 85.9 33.96 19.71 1.36 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6 85.9 33.96 19.71 1.36 Image: Note that the state that the stat	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 17.1 88.0 33.52 19.71 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 33.68 19.71 1.36 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 33.68 19.71 1.36 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6 85.9 33.96 19.71 1.36 I 100 85-100 62-92 40-70 26-55 21-53 12 to28 2 to10 ≤ 25 ≥ 80 ≤ 35 ≤ 25 Max 12% ≥ 80	S 100 97.5 73.8 57.7 42.9 31.8 16.3 5.8 17.1 88.0 33.52 19.71 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 33.68 19.71 1.36 S 100 97.3 73.0 56.5 42.2 31.3 15.0 5.3 18.5 88.2 33.68 19.71 1.36 S 100 95.8 72.1 55.3 41.5 30.3 15.1 5.2 18.6 85.9 33.96 19.71 1.36 I 100 85-100 62-92 40-70 26-55 21-53 12 to28 2 to10 ≤ 25 ≥ 80 ≤ 35 ≤ 25 Max 12% ≥ 80

SMEC-Brisbane-AQUA-CEMAT-BDA	CTCE-KALIKA J/V
Approved by C.S.E	Submit by Project Manager
Test Checked by A.C.S.E	Test Conducted by Q.C Manager
Consultant Reps	Consultant Reps

SECONDARY TOWNS INTEGRATED URABAN ENVIRONENTAL IMPROVEMENT PROJECT

Biratnagar Sub-Metropolitant City

MONTHLY Test Result Summary Sheet For The Month of **JANUARY 2017**

Graded Crushed Stone Base Course (Process Control)

P.G-2

STIUEIP

STANDARD SPECIFICATION FOR ROAD AND BRIDGE WORKS SECTION 1200 Table 12.3 Physical Requirement of Graded Crushed Stone Base

	LAB	Date	*			Grad	ing sie	eve size	e (mm)	1		Fl	CR	LAA	AIV	SSS	Soaked	Lab.	Lab.	
SN	REF	Tested	Location/ Chainage	/	1	(%	passin	g by w	eight)				Ratio	LAA		5 cycle	CBR	MDD	омс	Remarks
277	No			40	31.5	20	10	4.75	2.36	0.60	0.075	%	(%)	(%)	(%)	(%)	(%)	(g/cc)	(%)	
13	104	3/1/2017	CH:3+670 to 3+720 RHS	100	95.9	70.5	50.4	37.5	27.2	13.9	5.2	17.21	87.7	33.88	20.00	1.24				
14	105	3/1/2017	CH:3+720 to 3+770 RHS	100	96.3	69.9	49.8	37.4	27.0	13.8	5.2	19.12	86.2	33.56	19.71					
15	106	3/1/2017	CH:3+770 to 3+820 RHS	100	97.3	83.9	57.2	43	30.1	15.3	5.5	17.81	85.9	33.68	17.71	1.04				
16	107	3/1/2017	CH:3+820 to 3+870 RHS	100	97.5	87.1	57.3	43.1	30.3	15.2	6.1	19.87	86.1	32.68	18.29		94	2.320	6.20	
17	108	3/1/2017	CH:3+870 to 3+920 RHS	100	97.7	87.3	57.7	41.1	27.9	14.6	6.1	19.06	86.8	33.20	17.71	1.28				
18	109	3/1/2017	CH:3+920 to 3+970 RHS	100	94.8	84.3	56.6	40.5	26.3	13.8	5.9	19.01	85.7	32.60	20.86					
19	110	3/1/2017	CH: 3+970 to 4+020 RHS	100	95.8	85.3	57.1	40.4	25.9	13.9	5.1	17.49	85.7	32.60	19.14	1.28		τ.		
20	111	3/1/2017	CH:4+020 to 4+050 RHS	100	96.8	86.1	56.9	41.5	28.8	15.0	6.4	18.21	85.5	33.68	18.57					
21	112	3/1/2017	CH:4+050 to 4+100 RHS	100	92.2	82.3	61.6	40.8	29.5	16.7	7.1	17.89	86.8	33.80	18.29	1.16	90	2.320	6.20	
22	113	3/1/2017	CH:4+100 to 4+140 RHS	100	92.6	81.4	61.1	40.6	29.2	16.2	6.5	17.71	88.8	32.20	19.14					
23	114	4/1/2017	CH:3+300 to 3+420 RHS & LHS	100	93	81.9	62.7	42.3	30.6	16.5	6.5	16.85	88.2	33.20	20.00	1.08	91	2.310	6.40	
24	115	4/1/2017	CH:3+340 to 3+380 RHS & LHS	100	93.7	83.3	63.6	42.6	30.2	16.4	6.4	19.72	90.0	32.52	20.00	1.32				
25	116	4/1/2016	CH:3+340 to 3+380 RHS & LHS	100	95.6	83.9	63.8	41.6	28.3	17.9	6.4	17.25	90.6	32.08	20.86	1.44				
	Req	quired Sp	ecifacation	100	85-100	62-92	40-70	26-55	21-53	12 to28	2 to10	≤ 25	<u>≥</u> 80	<u>≤</u> 35	≤ 25	Max 12%	≥ 80			
REN	ARK	S:Crush	ed Stone base																	
		bane-AQ	UA-CEMAT-BDA							CTCE	-KALI			ner		A CO	the and	1		

Test Checked by A.C.S.E

Consultant Reps

Submit by Project Manager Test Conducted by Q.C Manager **Consultant Reps**

			CEN	ENT TEST	SUMMER	RY		
	For	the Month of JANL						P.G-
S.N.	Lab. Ref.	Description of cement	Testing	Consiste	ncy & Setti	ng Time	Remarks	1.0-
1	NO.	01111/11/0000	Date	Norm. Const.	Intial(min.)	Final(min.)		
	MR 196	SHIVAM OPC	1/1/2017	36.9	190	320	All Cement	
2	MR 197	SHIVAM OPC	2/1/2017	37.6	190	330	Are	
3	MR 198	SHIVAM OPC	3/1/2017	36.7	200	305	Nepali	
4	MR 199	SHIVAM OPC	4/1/2017	37.9	180	335	BRAND	
5	MR 200	SHIVAM OPC	5/1/2017	36.9	180	200		
6	MR 201	SHIVAM OPC	6/1/2017	37.1	180	200		
7	MR 202	SHIVAM OPC	7/1/2017	37.0	250	300		
8	MR203	SHIVAM OPC	8/1/2017	36.3	185	320		
9	MR 204	SHIVAM OPC	8/1/2017	36.0	185	330		
10	MR 205	SHIVAM OPC	9/1/2017	36.4	180	320	OPC	
11	MR 206	SHIVAM OPC	10/1/2017	37.6	175	335		
12	MR 207	SHIVAM OPC	11/1/2017	36.9	195	295		
13	MR 208	SHIVAM OPC	12/1/2017	37.9	190	330		
14	MR 209	SHIVAM OPC	13/1/2017	38.0	200	320		
15	MR 210	SHIVAM OPC	14/1/2017	37.9	205	335		
16	MR 211	SHIVAM OPC	15/1/2017	38.0	205	315		
Requi	rements in acc	cordance with BS 12/4027			> 45 Min.	10 Hrs		
pprovest Cl	Brisbane-AQU red by C.S.E necked by A.C tant Reps			CTCE-KALIKA Submitted by Test Conduct Contractores	A J/V Project Ma ed by Q.C	anager	Jur!	

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant City

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M20/20 SLAB CASTING WORK MIX

	1.1.0.4		Destalla of Min	1	-				22			1	
.N.	Lab Ref No.	Date of Casting	Deatails of Mix	Location		tio by VOL			Ma	iterials	Cube Cri	ushing ,N/mm2	Remarks
				Structure	Water	Cement		Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
37	199	25/12/2017	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	_ 15.6	21.9	
38	200	26/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.4	
39	201	26/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.5	22.1	
40	202	26/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.6	22.2	
41	203	27/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.8	22.4	
42	204	27/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.3	22.2	
43	205	27/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.6	-22.4	
44	206	28/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.3	22.1	
45	207	28/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	.17.6	22.4	
46	208	28/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	/16.9	/22.1	
47	209	29/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.2	22.2	
48	210	29/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.2	22.5	
49	211	29/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.2	/21.8	
50	212	30/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.3	22.1	
51	213	30/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.6	21.9	
52	214	30/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.9	22.4	
53	215	30/12/2016	M20 Work mix	SLAB YARD	0.50	- 1	2	3.5	SHIVAM	Om shree C/plant	17.0	22.2	
54	216	31/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16:0	22.2	
55	217	31/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	15.9	22.4	
56	218	31/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.0	22.5	
	Specifaca	tion Limit Table	e For M20/20 on 7 day	ys Age Min 67% of Tot	al Compress	sive Streng	th		Min	Required 13.4	22 \$20		
pp est	roved by	by A.C.S.E	DA n Supervision Engi	ineer/CSE	Subm Test o	-KALIK itted by conduct actors	Proj	ect Mana Q.C Mai	iger nager	11	KIENTUR	(a)	

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant City

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M20/20 SLAB CASTING WORK MIX FOR THE MONTH OF JANUARY 2017

S.N.	Lab Ref No.	Date of	Deatails of Mix	Location	Ra	tio by VOL	UME		M	aterials			-
	140.	Casting		Structure							Cube Cr	ushing ,N/mm2	Remarks
19	181	19/12/2016	M20 Work mix	SLAB YARD	Water			Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
20	182	20/12/2016	M20 Work mix		0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.5	21.6	
21	183			SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16,6	21.9	
		20/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.8	22.1	
22	184	20/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.6	22.2	
23	185	21/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.3	/	
24	186	21/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	-	22.1	
25	187	21/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	1000		16.1	22.4	
26	188	22/12/2016	M20 Work mix	SLAB YARD	0.50	1	2		SHIVAM	Om shree C/plant	15.7	22.2	_
27	189	22/12/2016	M20 Work mix	SLAB YARD	-			3.5	SHIVAM	Om shree C/plant	18.3	22.2	
28	190	22/12/2016	M20 Work mix		0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.9	21.9	
29	191	23/12/2016	and a second second	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.4	22.5	
+			M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.3	22.2	
30	192	23/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.6	22.7	
1	193	23/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.6	22.4	
2	194	24/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant			
3	195	24/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5			16.9	22:4	
4	196	24/12/2016	M20 Work mix	SLAB YARD	0.50	1	-			Om shree C/plant	16.3	22.2	
5	197	25/12/2016	M20 Work mix	SLAB YARD		-	2	3.5	SHIVAM	Om shree C/plant	16.6	22.1	
6	198	25/12/2016	M20 Work mix		0.50	1	2	3.5	SHIVAM	Om shree C/plant	15.7	22:5	
_		Che Che Che Che Che		SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.3	21.9	
MEC	Dai-L		For M20/20 on 7 day:	s Age Min 67% of Tota	I Compressiv	ve Strengtl	1		Min F	Required 13.4	20		
opro	oved by (by A.C.S.E	A Supervision Engin	eer/CSE	Submit	KALIKA	Projec	ct Manag Q.C Mana	ler	1 100	TVE SI		

SECONDARY TOWNS INTEGRATED URABAN ENVIRONMENTAL IMPROVEMENT PROJECT Biratnagar Sub-Metropolitant City

SUMMARY OF CUBE COMPRESSIVE STRENGTH TEST M20/20 SLAB CASTING WORK MIX FOR THE MONTH OF JANUARY 2017 P.G-1

	Lab Def		During the second		Statestatt 2017				P.G-1				
5.N.	Lab Ref No.	Date of Casting	Deatails of Mix	Location	Ratio by VOLUME				м	aterials	Cube Crushing ,N/mm2		Remarks
1	163	4/12/2016	M20 Work mix	Structure		Cement	Sand	Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	
-				SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.4	
2	164	5/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.4	22.3	
3	165	6/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.0	22.6	
4	166	7/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	22.7	
5	167	8/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	/		
6	168	9/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM		16.3	22.4	
7	169	10/12/2016	M20 Work mix	SLAB YARD	0.50	1				Om shree C/plant	16.4	/22.4	
8	170	11/12/2016	M20 Work mix	SLAB YARD			2	3.5	SHIVAM	Om shree C/plant	17.0	/22.2	
9	171	16/12/2016	M20 Work mix		0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.5	22.1	
				SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	-17.0	22.7	
10	172	16/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.0	22.2	
11	173	16/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.6	22.6	
2	174	17/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	17.0	22.4	-
3	175	17/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	/	/	
4	176	18/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5			16,9	22.6	
5	177	18/12/2016	M20 Work mix	SLAB YARD	0.50	1			SHIVAM	Om shree C/plant	16.4	22.1	
6	178	18/12/2016	M20 Work mix				2	3.5	SHIVAM	Om shree C/plant	16.9	22.5	
7	179			SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.7	/ 22.2	
-		19/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.2	22.8	
8	180	19/12/2016	M20 Work mix	SLAB YARD	0.50	1	2	3.5	SHIVAM	Om shree C/plant	16.3	22.4	
1	Specifaca	tion Limit Ta	ble For M20/20 on 7	days Age Min 67% of 1	Total Co	npressive	Streng	th		Min Requir	1	3.4 20	
ME opr est	C-Brisban oved by (ne-AQUA-BE Construction by A.C.S.E	DA Supervision Engin	neer/CSE	CTCE- Submi Test co	KALIKA tted by	A J/V Proje ed by	ct Manag Q.C Man	jer ager	1. 60	HERE A		

Source

	- + -	SUMM	ARY OF CUE	E COMPRESS	VE S	TRENG	ATH T	EST M3	0/20 MAN	HULE CAST	P.G-1		
			FOR TH		ANUARY 2017 Ratio by MASS				Ма	terials	Cube Cru	Remarks	
5.N.	Lab Ref No.	Date of Casting	Deatails of Mix	Location		Cement		Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	=
1	MR 138	4/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.5	31.6	-
2	MR 139	4/12/2016	M30 Work mix	MANHOLE YARD	0.36	. 1	1.28	2.14	SHIVAM	Om shree C/plant	24.7	31.5	
3	MR 140	5/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	24.7	31.5	
4	MR 141	6/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.3	
5	MR 142	6/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	31.7	
6	MR 143	7/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.7	31.7	
7	MR 144	7/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	24.3	31.6	1
8	MR 145	7/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	23.4	31.5	
-	MR146	8/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.3	
9		9/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	21.9	31.4	
10			M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.6	31.9	
11		10/12/2016		MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	25.0	31.6	
12		10/12/2016	M30 Work mix		0.36	1	1.28		SHIVAM	Om shree C/plant	22.4	31.6	
1:	8 MR 150	11/12/2016	M30 Work mix	MANHOLE YARD		1	1.28		SHIVAM	Om shree C/plant	22.5	31.6	
1	MR 151	12/12/2016	M30 Work mix	MANHOLE YARD	0.36		1.28		SHIVAM	Om shree C/plant		31.9	
1	5 MR 152	12/12/2016	M30 Work mix	MANHOLE YARD	0.36				SHIVAM	Om shree C/plant		31.9	
1	6 MR 153	13/12/2016	M30 Work mix	MANHOLE YARD	0.36		1.28	-		Om shree C/plant		31.6	
1			M30 Work mix	MANHOLE YARD	0.36		1.28	2.14	SHIVAM			.30	
1	Specifaca	ation Limit Tab	le For M30/20 on 7 o	lays Age Min 67% of Tota					MI	n Required 20.	132 - 9	10.16	
SMEC-Brisbane-AQUA-BDA Approved by Construction Supervision Engineer/CSE Test checked by A.C.S.E				Subn Test	E-KALIKA nitted by I conducte ractors R	Project d by Q.(Manager C Manager	14	-		目刊		

		SUMM		BE COMPRESS				EST M3	30/20 MAN	HULE CAS	P.G-		
-				E MONTH OF		atio by MA			Ma	terials		shing ,N/mm2	Remarks
s.n.	Lab Ref No.	Date of Casting	Deatails of Mix	Location	Water			Aggregate	Cement Brand	Aggregate/Sand	7 days	28-Days	1
18	MR 155	14/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	31.6	
19	MR 156	15/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	31.9	
20	MR 157	16/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	21.9	31.6	
21	MR 158	16/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.6	31.4	
22	MR 159	17/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.3	
23	MR 160	17/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.3	31.9	-
24	MR 161	17/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	32.0	
25	MR 162	18/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.3	31.5	
26	MR 163	18/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.4	
27		18/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.7	32.0	
28	MR 165	19/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.6	31.7	
29	MR 166	19/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.4	31.9	
30	-	19/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	31.3	
31		20/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.1	31.6	
32		20/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.5	31.4	
33		20/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.0	31.3	
34		20/12/2016	M30 Work mix	MANHOLE YARD	0.36	1	1.28	2.14	SHIVAM	Om shree C/plant	22.2	31.4	
-				ays Age Min 67% of Tota	al Compre	ssive Stre	ngth		Mir	Required 20.	1	30	
Ap Te	EC-Brisba	ane-AQUA-BE Construction I by A.C.S.E)A n Supervision Engi	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	CTCE Subm Test	-KALIKA	J/V Project I d by Q.(Manager C Manager	14	1.	State of the second	STATE OF THE STATE	